
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2005-03

An analysis of disc carving techniques

Mikus, Nicholas A.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/2219

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN ANALYSIS OF DISC CARVING TECHNIQUES

by

Nicholas Mikus

March 2005

 Thesis Advisor: Chris Eagle
 Second Reader: George Dinolt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: An Analysis of Disc Carving Techniques

6. AUTHOR(S) Mikus, Nicholas

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 Disc carving is an essential element of computer forensic analysis. However the high cost of commercial solutions coupled
with the lack of availability of open source tools to perform disc analysis has become a hindrance to those performing analysis
on UNIX computers. In addition even expensive commercial products offer only a fairly limited ability to “carve” for various
files.

 In this thesis, an open source tool known as Foremost is modified in such a way as to address the need for such a carving
tool in a UNIX environment. An implementation of various heuristics for recognizing file formats will be demonstrated as well
as the ability to provide some file system specific support.

 As a result of these implementations a revision of Foremost will be provided that will be made available as an open source
tool to aid analysts in their forensic investigations.

15. NUMBER OF
PAGES
159

14. SUBJECT TERMS
Computer Forensics, Disc Carving, Data Carving

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ANALYSIS OF DISC CARVING TECHNIQUES

Nicholas A. Mikus
Civilian, Federal Cyber Corps

B.S., University of Illinois Chicago, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2005

Author: Nicholas Mikus

Approved by: Christopher S. Eagle

Thesis Advisor

George Dinolt
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Disc carving is an essential element of computer forensic analysis. However the

high cost of commercial solutions coupled with the lack of availability of open source

tools to perform disc analysis has become a hindrance to those performing analysis on

UNIX computers. In addition even expensive commercial products offer only a fairly

limited ability to “carve” for various files.

 In this thesis, an open source tool known as Foremost is modified in such a way

as to address the need for such a carving tool in a UNIX environment. An

implementation of various heuristics for recognizing file formats will be demonstrated as

well as the ability to provide some file system specific support.

 As a result of these implementations a revision of Foremost will be provided that

will be made available as an open source tool to aid analysts in their forensic

investigations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. DISC CARVING BACKGROUND..2
B. PURPOSE OF STUDY..3
C. THESIS ORGANIZATIONON..5

II. BACKGROUND ..7
A. FOREMOST...7
B. FILE ..9

III. IMPLEMENTATION ...13
A. HEURISTICS...13

1. OLE Archive...13
2. PDF (Adobe Portable Document Format).......................................20
3. JPEG ...22
4. GIF ..25
5. BMP (Windows Bitmap Files) ..26
6. MOV (QuickTime Movie files) ...28
7. WMV (Windows Media Video) ..30
8. ZIP...33
9. GZIP..36
10. RIFF ..37
11. HTML ...39
12. CPP (C/C++ Source Code) ..39

B. SEARCH ALGORITHMS..40
1. Boyer Moore Description ..40
2. Algorithm Analysis ..42

C. INDIRECT BLOCKS..42
1. UNIX File System Overview ...42
2. Indirect Block Detection..42

IV. EXPERIMENTAL RESULTS..47
A. OVERVIEW...47
B. NTFS ...47
C. FAT32..51
D. EXT2/EXT3..55

V. CONCLUSION ..59
A. SUMMARY ..59
B. PROBLEMS ...59
C. FUTURE WORK...60

APPENDIX A. SOURCE CODE...63
A. EXTRACT.C ..63
B. EXTRACT.H..86

 viii

C. API.C...88
D. OLE.H...95
E. ENGINE.C..97
F. DIR.C ..105
G. HELPERS.C...108
H. MAIN.C...115
I. MAIN.H ..118
J. CONFIG.C..124
K. STATE.C...128
L. CLI.C...135
M. FOREMOST.CONF ..136

LIST OF REFERENCES..141

INITIAL DISTRIBUTION LIST ...143

 ix

LIST OF FIGURES

Figure 1. ole-dump output of a MS Word Document...17
Figure 2. ole-dump output of an Excel Spreadsheet ...18
Figure 3. ole-dump output of an Power Point Document ...19
Figure 4. Linearized PDF (From Ref. [11]) ..21
Figure 5. Non Linearized Header..22
Figure 6. QuickTime Movie Structure (From: Ref. [17]) ...29
Figure 7. ASF File Structure (From: Ref. [18]) ..31
Figure 8. Basic Zip File Structure (From Ref. [19]) ...34
Figure 9. Brute Force Search (From Ref. [23]) ..41
Figure 10. Boyer Moore Search (From Ref. [23]) ...41
Figure 11. Debugfs Screenshot ..43
Figure 12. Indirect Block Screenshot..44

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Foremost configuration file..8
Table 2. FILE sample magic format ..10
Table 3. OLE Header Structure (After: Ref. [8]) ...14
Table 4. OLE Header Hexdump ..15
Table 5. JPEG Marker Information (After: Ref.[13])..23
Table 6. Canon Digital Camera JPEG representation..24
Table 7. GIF File Format ...25
Table 8. BMP Header Information(After: Ref. [16])...27
Table 9. BMP Header in hexadecimal ...28
Table 10. MOV Extraction Algorithm Step-through ...30
Table 11. ASF File Properties Object Structure (After: Ref. [18])..................................32
Table 12. ASF Header in Hexadecimal ...33
Table 13. ZIP local file header structure (From Ref.[19]) ...34
Table 14. End of Central Directory Object Structure (From Ref.[19])............................35
Table 15. ZIP extraction algorithm step-through...36
Table 16. GZIP Header in Hexadecimal..37
Table 17. Wave File Header ..38
Table 18. AVI File Header...38
Table 19. Brian Carriers JPEG test image files (From Ref. [25])....................................48
Table 20. ILOOK results from NTFS sample image ...49
Table 21. Foremost (0.69) results from NTFS sample image..50
Table 22. Foremost (1.0) results from NTFS sample image..51
Table 23. Sample FAT32 test image..52
Table 24. Foremost (0.69) results from FAT32 sample image..53
Table 25. Foremost (1.0) results from FAT32 sample image..54
Table 26. Sample EXT2 Image..55
Table 27. Foremost (0.69) results from EXT2 sample image..56
Table 28. Foremost (1.0) results from EXT2 sample image..57

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation

under Grant No.DUE-0114018.

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of the National

Science Foundation.

This paper, as well as most things in my life, would not have been possible

without my wife Holly.

I would also like to thank Jesse Kornblum and Kris Kendall for developing the

open source tool Foremost for analysts to use and learn from.

Finally I would like to thank LCDR Chris Eagle for teaching me to be “leet”.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

As computers become more prevalent in society, their use for criminal and other

nefarious purposes also increases. This has lead to a demand for Computer Forensic

specialists to analyze digital evidence to help catch these criminals. In response to this

demand the FBI and other law enforcement agencies are building Regional Computer

Forensic Laboratories across the country. These facilities are equipped with state of the

art tools and highly trained examiners to help with an overwhelming case load. In FY

2003, the RCFL Program processed 82.3 terabytes of data; this is the equivalent of

roughly 3,427,644 boxes of paper filled with text [Ref. 1]. The San Diego RCFL alone

received over 700 requests to review various cases involving the need for computer

forensic examinations. This shows the magnitude of the increase in the computer related

evidence, and the bad news is, it is only going to get worse for examiners. As hard drives

and multimedia storage devices grow exponentially so must the capabilities of the tools

which investigators use to analyze these devices. One major area that must be improved

is referred to as disc carving.

Disc carving is an essential aspect of Computer Forensics and is an area that has

been somewhat neglected in the development of new forensic tools. The term disc

carving can be defined as data recovering using “raw” information as opposed to file-

system meta-data. Disc carving has a great impact on computer forensic cases because it

adds the flexibility of being able to dissect stored information independent of any

underlying file system structure. Disk carving has also become synonymous with the

term data carving but for the context of this paper the term disc carving will be used. My

research in the arena of disc carving will aid investigators in being able to extract useful

information from storage devices using an open source product which can automate a

large portion of the process. Making this tool and its source code freely available

eliminates one of the greatest inhibitors which is the cost of many commercial forensic

suites.

New approaches to disc carving must be studied to help develop more efficient

and reliable products for investigators to use. These methods can hopefully offset some

2

of the increasing work load that high volume storage devices pose to limited number of

investigators. In addition this research can help in the prosecution of criminals who use

computers in some form or another in the conduct of their business.

A. DISC CARVING BACKGROUND
Disc carving refers the ability to recover files from a medium which may or may

not be a recognizable file system. It is commonly used in reference to extracting files

from unallocated or slack space from a given file system [Ref. 2]. Files are allocated disk

space in multiples of the file system block size. Slack space refers to the unused space

within the last block allocated to a file. This space lies between the last data byte of the

file and the end of its associated block. The amount of slack space a file contains can be

computed as (file size) modulo (block size). Thus since all files do not end exactly on

block boundaries this “excess” space can be used to hide data from file system view.

Disc carving research has been relegated to the background of forensic tool

development. Tools such as ILOOK [Ref. 3], Encase [Ref. 4], and FTK (Forensic Tool

Kit) [Ref. 5] focus on recovering files via metadata. It is true that this is a very effective

and efficient method of file recovery, however, if the metadata is corrupted or non-

existent, then these methods usually fail. Also the data in question could have been

“deleted” from the file system view. However, the data could very well be, and often is

still intact on the disc, it is just a matter of “carving” it out. In my experimental results

data that is years old can often be recovered from unallocated space, depending on the

volume size and disc activity.

FTK and Encase address the issues of data carving but these tools are Microsoft

Windows based and are very expensive. The cost of these tools and the fact that the

extraction methods are closed source is an inhibitor to the forensic community that

wishes to use a more robust tool that can perform successful extractions. ILOOK is

another Microsoft Windows based tool used in forensic investigations but it is only

available to Law Enforcement and government agencies. ILOOK is free to specific

government agencies that support a law enforcement directive; however, like FTK and

Encase, it is closed source. Thus the ability to learn from and improve extraction

3

methods is diminished. The fact that the majority of tools currently used by law

enforcement are closed source has lead some developers and forensic researches to turn

to the open source community.

In the open source world Brian Carrier’s Sleuthkit has become a standard tool for

doing forensic analysis on UNIX systems. This tool has provided a wealth of resources

to examiners that use a UNIX platform and also those faced with fiscal constraints who

cannot afford its Windows counterparts. However, one glaring hole in the Sleuthkit is

that it provides no carving functionality. Thus investigators looked to a tool named

Foremost to fill in the gap. Foremost is a very powerful disc carving tool but it is lacking

in some respects as chapter II will discuss. The eventual inclusion of disc carving

functionality in Sleuthkit will help solidify its place in the forensic community and

provide a viable alternative to commercial products.

B. PURPOSE OF STUDY
The purpose of this research is to develop a more intelligent tool to extract files

from a medium independent of its file-system structure. Such a tool will greatly reduce

the time spent by investigators plowing through binary file representations trying to

ascertain what files can and cannot be recovered. Current open source methods of disc

carving lack the sophistication needed to provided a robust disc carving program. The

general idea to develop such a tool is to mimic the behavior of the file command available

on UNIX systems but to apply that intelligence to the disc carving tool Foremost.

Foremost is a utility that “carves” files out of raw data blocks based on file header and

footer data. The file command, which will be covered in depth in chapter II, often looks

at more than just the header of the file in order to comprehend the file’s internal data

structures as well. If the functionality of file and Foremost were combined then a much

more powerful tool could be produced. The strategy that emerged as the most fruitful in

the development of extraction methods was to perform a more detailed analysis of

specific file data structures, allowing for a more in depth recognition as well as increasing

the speed of the program. Speed is obviously key when performing analysis of very large

disc images, the data structure approach does require the program to become more

intelligent but it will save time for the examiner who is currently required to at least have

4

a working knowledge of file format specifications in order to successfully recover files

manually. The automation of this process however challenging, offers great promise in

terms of productivity.

My research produced many extraction algorithms which can then be scrutinized

and tested via the vast open source forensic community. Creating open source forensic

tools is a great way to develop and test tools economically and efficiently. The current

implementation of the algorithms described in chapter III can be viewed in the CVS

repository of Foremost at http://cvs.sourceforge.net/viewcvs.py/foremost/foremost-1.0/.

The availability of the enhancement has lead to increased feedback from the forensic

community about features they would like to see as well as problems they encounter.

 The outcome of the cycle of publishing and revising the source code will

eventually lead to a more robust library of extractions methods that can essentially do the

“dirty work” of looking at blocks of data trying to determine if the file is still intact and

what type of file is it. Tools like Foremost solve many problems but also introduce new

ones. However, these problems may be viewed in a positive light because their solutions

lead to more intelligent and efficient products that can aid analysts in data carving.

The debate against open source is usually that the software product may be more

prone to exploitation. This is not a major concern with Forensic software as it is not

providing a service to multiple clients, just analyzing a local drive. Thus in the case of

forensic software, using open source tools just makes more sense.

The goal of a good disc carving tool is to remain file-system independent, which

ensures the flexibility of being able to analyze a wider range of storage media. However,

options should be added if knowledge of the file-system of a given device is obtained.

One example of this is the problem that indirection blocks, used in UNIX file-systems,

pose to disc carving. This issue is covered in great detail in chapter three and is another

area that commercial forensic products fail to address in the context of disc carving.

Thus this paper will describe the implementation of algorithms which will enhance

extraction capabilities of an existing Forensic tool, independent of file-system structure,

but also, when possible, leveraging certain file-system attributes that can aid the

extraction process.

5

C. THESIS ORGANIZATIONON
This paper will present a working implementation of a disc carving tool that can

recover specified files from any block of raw binary data such as, but not restricted to,

partial or complete disk images. Chapter II details the operation of Foremost and the file

command and explains how a hybrid will benefit the forensic community. Chapter III

will provide a description of the important algorithms and the details of their

construction. The algorithms include file extraction methods as well as indirection block

detection for UNIX file-systems. Full source code examples of each extraction algorithm

are provided in Appendix A. Chapter IV will provide a set of experimental results when

running the foremost enhancement versus various data carving tools. Different files

systems are discussed and tested as well as the details of the indirect block detection

capabilities. Chapter V will conclude my research by discussing problems faced as well

as describe future work in this are of Computer Forensics.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

A. FOREMOST
Foremost is an open source forensic tool created for the Linux platform and

developed by Special Agents Kris Kendall and Jesse Kornblum of the U.S. Air Force

Office of Special Investigations. In accordance with 17 USC 105, this tool is not afforded

any copyright protection because it is a work of the U.S. government. The tool was

inspired by, and designed to imitate the functionality of, the DOS program CarvThis,

written by the Defense Computer Forensics Lab. Foremost enables forensic examiners to

automatically recover files or partial files from a bit image (or the media itself) based on

file header and footer types specified in a user-defined configuration file.

Foremost works by reading into memory a pre-defined portion of the media or

media image under examination. By default this chunk of memory is 10MB, thus images

are analyzed 10MB at a time. Each chunk is searched for file headers contained within

the Foremost configuration file. If a matching header is found, then Foremost attempts to

locate the corresponding end of the file. Foremost will search for the footer (which

signifies the end of the file) until a file size limit listed in the configuration file is reached.

If the footer is found then the recovered file data is written to a separate disk file,

however if it is not then Foremost will dump the maximum file size after the header. If

no footer is defined in the configuration file then foremost will extract the maximum

number of bytes specified by the configuration file after every header is found. Using a

file size limit serves as a means to stop Foremost from adding data to a recovered file if

the appropriate file footer is not found. This is a fairly efficient approach if such a

header/footer pair is uniquely defined but this is not often the case.

Another limitation of Foremost is the fact that even if a file is successfully

extracted, the same data that was just analyzed is checked again. This method is

designed to recover embedded files containing the header signature but can be very

computationally expensive. This implementation is flawed in the case where Foremost

cannot determine the end of the file, thus it merely dumps a predetermined amount of

data, this data is then searched for the same header. Files that contain multiple headers

8

result in fragments of files being written to disk often resulting in the creation of multiple

garbage files. This reduces the speed of the program as time is wasted re-analyzing and

re-extracting data that has already been extracted as part of a larger file. This added

execution time could be better spent ensuring a valid extraction in the first place rather

than relying on forensic specialists to wade through redundant fragments of a given file.

Table 1 illustrates some sample Foremost configuration file definitions. The first

field denotes the suffix appended to the file if extracted, the second defines whether the

search to be performed is case sensitive, followed by the maximum defined file size and

lastly the header/footer pair. Notice the definition for avi doesn’t include a footer; this is

a common occurrence in the configuration file. If this is the case then Foremost will just

extract the maximum amount following the header, often leading to truncated extractions.

Other formats in the configuration file that do not contain an adequate footer include doc,

mov, bmp, xls, java.

Suffix Case Sensitive Max Size Header Footer

jpg Y 20000000 \xff\xd8\xff\xe0\x00\x10 \xff\xd9

htm N 50000 <html </html>

avi Y 4000000 RIFF????AVI

Table 1. Foremost configuration file

These formats show the flawed method by which these files are extracted. The

program then relies on a forensics analyst to extract useful information from the

maximum file amount. This amount may not be of sufficient size, thus forcing the

analyst to increase the file size and re-run the program iteratively until enough of the file

has been extracted. This is an added burden to the time consuming task of performing a

detailed analysis of very large storage devices. If this process could be made more

intelligent then examiners could spend more time analyzing the evidence rather than

extracting it.

9

B. FILE
File is a program which examines a given file’s content in an attempt to classify it

based on the actual data in the file rather than merely the suffix (.exe) [Ref. 6]. There are

three sets of tests that are performed by file: file system tests, magic number tests, and

language tests. The first test that succeeds causes the file type to be printed. The idea of

the Foremost enhancement is to harness the same type of built-in intelligence provided in

the magic number tests.

The determined file type will usually fall into one of the following categories: text

(the file contains only printable characters and a few common control characters and is

probably safe to read on an ASCII terminal), executable (the file contains the result of

compiling a program into a binary form understandable by some operating system), or data

meaning anything else (data is usually `binary' or non-printable). Exceptions are well-

known file formats (core dump files, tar archives, etc.) that are known to contain binary

data. When modifying the /usr/share/magic file or the program itself, it is necessary to

preserve these keywords. Note that the file /usr/share/magic is built mechanically from a

large number of small files in the subdirectory Magdir in the source distribution of this

program, these files can be modified by a user knowledgeable about a specific file

specification.

The file system tests are based on examining the return from a stat(2) [Ref. 7]

system call. The program checks to see if the file is empty, or if it's some sort of special

file. Any known file types appropriate to the system you are running on (sockets,

symbolic links, or named pipes (FIFOs) on those systems that implement them) are

discovered if they are defined in the system header file <sys/stat.h>.

The magic number tests are used to check for files with data in particular fixed

formats. The canonical example of this is a binary executable (compiled program) a.out

file, whose format is defined in a.out.h and possibly exec.h in the standard include

directory. These files have a `magic number' stored in a specific, well defined location

near the beginning of the file that tells the UNIX operating system that the file is a binary

executable, and which of several types thereof. The concept of `magic number' has been

adopted by the developers of many other data file formats. Any file with some invariant

10

identifier at a small fixed offset into the file can usually be described in this way. In the

Linux operating system, the information identifying these files is read from the compiled

magic file /usr/share/magic.mgc , or /usr/share/magic if the “compiled” file-magic.mgc

does not exist. Notice Table 2 which shows how the standard JPEG header is defined in

the magic file. More tests are performed to determine more information about the image

but the principal of the program is that it looks at the data structures of the file as opposed

to just header information.

Offset Data Type Data to match Description

0 Beshort 0xffd8 JPEG image data

>6 String JFIF \b, JFIF standard

Table 2. FILE sample magic format

If a file does not match any of the entries in the magic file, it is examined to see if

it seems to be a text file. ASCII, ISO-8859-x, non-ISO 8-bit extended-ASCII character

sets (such as those used on Macintosh and IBM PC systems), UTF-8-encoded Unicode,

UTF-16-encoded Unicode, and EBCDIC character sets can be distinguished by the

different ranges and sequences of bytes that constitute printable text in each set. If a file

passes any of these tests, its character set is reported. ASCII, ISO-8859-x, UTF-8, and

extended-ASCII files are identified as ``text'' because they will be mostly readable on

nearly any terminal; UTF-16 and EBCDIC are only ``character data'' because, while they

contain text, it is text that will require translation before it can be read. In addition, file

will attempt to determine other characteristics of text-type files. If the lines of a file are

terminated by CR, CRLF, or NUL, instead of the Unix-standard LF, this will be reported.

Files that contain embedded escape sequences or overstriking will also be identified.

Once the file program has determined the character set used in a text-type file, it

will attempt to determine in what language the file is written. The language tests look for

particular strings that can appear anywhere in the first few blocks of a file. For example,

the keyword “.br” indicates that the file is most likely a troff(1) input file, just as the

keyword struct indicates a C program. These tests are less reliable than the previous two

11

groups, so they are performed last. The language test routines also test for some

miscellany (such as tar(1) archives). Any file that cannot be identified as having been

written in any of the character sets listed above is simply said to be ``data''[Ref 6.].

These tests and the ability to define new tests based on the file offsets prototype

for the types of logic that must be incorporated into a program like Foremost to make it

more effective. The only thing file lacks for our context is a looping structure. In

addition it doesn’t concern itself with embedded files or where the file data terminates.
1However applying this functionality is relatively trivial once the data structures of the

file are adequately understood. File specifications are the key to utilizing the searching

capability that Foremost provides in the most efficient manner.

1 An embedded file refers to a FILE that is encapsulated within another file.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

III. IMPLEMENTATION

A. HEURISTICS

1. OLE Archive
Microsoft’s Object Linking and Embedding file format provides for a “structured

storage” environment for various types of file formats [Ref. 8]. It is basically an

abstraction so that file formats can use the OLE API to read and write data to the disk.

This is useful because the formats can then store the data as objects instead of a flat file.

It also permits more cross functionality between applications that adhere to this file

structure, therefore it is easier to copy objects from a Word document to an Excel file for

instance. However this also significantly complicates file extraction because the file

structure is much more dynamic.

Previously Foremost only provided the OLE header for Microsoft Word

documents and extracted the following the first 50KB relying upon the examiner to

determine the end of the file. The algorithms presented here provide a much higher rate

of extraction with increased accuracy of the data recovered. These algorithms make use

of an API developed by the Chicago Project (http://chicago.sourceforge.net/) whose goal

is to develop a C library to read and write Microsoft Excel documents [Ref. 9]. This API

was modified to add error detection and the ability to analyze an array of bytes as

opposed to a stand alone file. This enables Foremost to use this API to extract file

dependent information and determine what type of file was stored in an OLE structure.

Parsing the OLE data structures proved complicated but extremely rewarding

because the extraction of any interesting Microsoft File Format adhering o the OLE

format became trivial. The algorithm works by first reading the header block which is

always 512 bytes. The block size of the remaining document is defined in the header but

it is usually 512 bytes as well. This value is specified by the uSectorShift field located in

the header block which is outlined in Table 3 below. This table also provides information

about what data values are located within the OLE header and Table 4 provides a

hexadecimal display of an OLE header taken from a Word Document. Table 4 also

shows the magic number, uByteOrder, num_FAT_blocks, and the root_start_block in

14

bold as these fields are crucial to begin parsing the OLE data structures as they provide

where to begin reading information and how to interpret it. Using the information in the

header we can then build the FAT (File Allocation Table) of the OLE document.

Offset Data Type Name Comments

0 Char magic[8] Must equal 0x d0 cf 11 e0 a1 b1 1a e1

8 Char clsid[16] class id field is generally not used

24 Ushort uMinorVersion Minor version of the format: 33 is written by reference
implementation. Used mainly for error checking purposes
in a disc carving context.

26 Ushort uDllVersion major version of the dll format: 3 is written by reference
implementation

28 Ushort uByteOrder indicates Intel byte-ordering

30 Ushort uSectorShift size of sectors in power-of-two (typically 9, indicating 512-
byte sectors)

32 Ushort uMiniSectorShift size of mini-sectors in power-of-two (typically 6, indicating
64-byte mini-sectors)

34 Ushort Reserved reserved, must be zero

36 Ulong reserved1 reserved, must be zero

40 Ulong reserved2 reserved, must be zero

44 Ulong num_FAT_blocks number of SECTs in the FAT chain

48 Ulong root_start_block first SECT in the FAT Directory chain

52 Ulong dfsignature signature used for transactioning must be zero. The
reference implementation does not support transactioning

56 Ulong miniSectorCutoff Maximum size for mini-streams: typically 4096 bytes.

60 Ulong dir_flag first SECT in the mini-FAT chain

64 Ulong csectMiniFat number of SECTs in the mini-FAT chain

68 Ulong FAT_next_block first SECT in the DIF chain

72 Ulong num_extra_FAT_bl

ocks

number of SECTs in the DIF chain

76 Ulong sectFat[109] FAT block list starts here. first 109 entries

Table 3. OLE Header Structure (After: Ref. [8])

15

Offset Hexadecimal

0 d0 cf 11 e0 a1 b1 1a e1 00 00 00 00 00 00 00 00

16 00 00 00 00 00 00 00 00 3e 00 03 00 fe ff 09 00

32 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00

48 5a 00 00 00 00 00 00 00 00 10 00 00 5c 00 00 00

64 01 00 00 00 fe ff ff ff 00 00 00 00 59 00 00 00

Table 4. OLE Header Hexdump

The FAT contains the allocation information within a compound file. Every sector

in the file is represented within the FAT in some fashion, including those sectors that are

unallocated (free). The Fat is a virtual stream made up of one or more FAT Sectors [Ref.

8]. FAT sectors are arrays of SECT’s that represent the allocation of space within the

file. Each stream is represented in the FAT by a chain, in much the same fashion as a

DOS file allocation table (FAT). To elaborate, the set of FAT sectors can be considered

together to be a linked list—where each node in the list contains the SECT of the next

sector in the chain, and this SECT can be used as an index into the Fat array to continue

along the chain [Ref. 5].

Once the File Allocation Table is parsed, it is used to extract objects embedded

within the file. This is done by examining the directory lists and then reading each entry

within them. The entries themselves hold the application specific information we are

looking for to determine what type of file it is (doc, ppt, xls…). The FAT is essentially

an array of pointers to the directory listings which in turn are arrays of pointers to the

entries themselves. The complexity of this hierarchy of pointers is the reason the

Chicago Project developed the OLE API. Programmers need not learn the OLE file

structure in order to achieve simple tasks of reading and writing to objects within the

document. The entries can then be parsed and their name, size, and offset are stored to

help determine the type of the file and size. Notice the listing in Figure 1 below which

shows the output of a program called ole-dump which was written for the Chicago

Project. It basically reads each entry of each directory structure and dumps the

16

information to the screen. The OLE extraction algorithm uses the basic functions of this

program to help discern the size and type of the file. Notice that DIRENT_2 has the title

“WordDocument”, all word documents contain some variation of this name as an object

in one of their entries. Therefore it can be used as an identifier for Microsoft Word

Documents.

17

DIRENT_0 : root directory Root Entry
prev dirent = ffffffff next dirent = ffffffff dir block = 3
unk1 = 20906 unk2 = 0 unk3 = c0
unk4 = 46000000 unk5 = 0 unk6 = 0
secs1 = 0 secs2 = 1896317920
days1 = 0 days2 = 29484230
start block = 26
size = 80
DIRENT_1 : file 1Table
prev dirent = ffffffff next dirent = 5 dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = a
size = 1000
DIRENT_2 : file WordDocument
prev dirent = 1 next dirent = ffffffff dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 0
size = 1222
DIRENT_3 : file 0005 SummaryInformation
prev dirent = 2 next dirent = 4 dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 12
size = 1000
DIRENT_4 : file 0005 DocumentSummaryInformation
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 1a
size = 1000
DIRENT_5 : file 0001 CompObj
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 0
size = 6a
Root Entry
1Table
4096
WordDocument 4642
SummaryInformation 4096
DocumentSummaryInformation 4096
CompObj
106

Figure 1. ole-dump output of a MS Word Document

Figure 2 below shows the output of an Excel spreadsheet that has been run

through the ole-dump program. DIRENT_1 is the main identifier here and it can be used

to identify files generated by the Microsoft Excel program. Parsing the OLE File

18

Allocation Table provides a great advantage in being able to discern exactly what the

contents of the file are.

DIRENT_0 : root directory Root Entry
prev dirent = ffffffff next dirent = ffffffff dir block = 2
unk1 = 20820 unk2 = 0 unk3 = c0
unk4 = 46000000 unk5 = 0 unk6 = 0
secs1 = 0 secs2 = 0
days1 = 0 days2 = 0
start block = fffffffe
size = 0
DIRENT_1 : file Workbook
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 0
size = 33a6
DIRENT_2 : file 0005 SummaryInformation
prev dirent = 1 next dirent = 3 dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 1a
size = 1000
DIRENT_3 : file 0005 DocumentSummaryInformation
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 22
size = 1000
Root Entry
Workbook 13222
SummaryInformation 4096
DocumentSummaryInformation 4096

Figure 2. ole-dump output of an Excel Spreadsheet

Lastly, Figure 3 shows an example of the contents of a simple Power Point

Document with the unique identifier ”Power Point Document” located in DIRENT_3.

Notice that the size of each DIRENT is used to determine the actual size of the file,

however, each size is contained within a block size that is specified in the OLE header,

thus each entry must be padded to adhere to this structure.

19

DIRENT_0 : root directory Root Entry
prev dirent = ffffffff next dirent = ffffffff dir block = 2
unk1 = 64818d10 unk2 = 11cf4f9b unk3 = aa00ea86
unk4 = e829b900 unk5 = 0 unk6 = 0
secs1 = 0 secs2 = 3860999472
days1 = 0 days2 = 29256468
start block = 6
size = 19c0
DIRENT_1 : file Current User
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 66
size = 38
DIRENT_2 : file 0005 SummaryInformation
prev dirent = 1 next dirent = 3 dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 36
size = bcc
DIRENT_3 : file PowerPoint Document
prev dirent = ffffffff next dirent = 4 dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 9
size = b12
DIRENT_4 : file 0005 DocumentSummaryInformation
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unk1 = 0 unk2 = 0 unk3 = 0
unk4 = 0 unk5 = 0 unk6 = 0
start block = 0
size = 204
Root Entry
Current User
56
SummaryInformation 3020
PowerPoint Document 2834
DocumentSummaryInformation 516

Figure 3. ole-dump output of an Power Point Document

Each of these documents has a very similar structure. They usually contain

summary information which includes information about the author, the file name, when

the file was last modified. Other methods to try to use the document summary

information as a type of makeshift footer are not reliable as this information can appear at

any location in the file.

The flexibility of the OLE file-structure also introduces the need for added error

detection. OLE files are complex in nature and must be verified to ensure proper parsing

and extraction. The consistency of various fields such fields as the block size of the

20

document, the number of FAT blocks, and the mini-FAT cutoff can be used to perform

error checking. This provides added assurance that the algorithm is not wasting its time

parsing corrupted data.

The extraction of OLE files offers great promise. Because the Microsoft Office

suite is so popular, documentation used by criminals can often be found in this format.

This also enhances the forensic capabilities of the UNIX/LINUX platform as reliable

OLE detection/extraction is only currently available on the Windows platform. In

addition, with the advent of OpenOffice [Ref. 10] which provides support for the

Microsoft Office suite these documents are often authored on UNIX systems as well.

Thus this detection capability provides an invaluable resource to those performing

forensic analysis.

2. PDF (Adobe Portable Document Format)
PDF is a file format used to represent a document in a manner independent of the

application software, hardware, and operating system used to create it [Ref. 11]. A PDF

file contains a PDF document and other supporting data. It is basically a binary file

which also uses ASCII tags as delimiters to describe the header and trailer data structures

in an SGML inspired fashion.

One of the main issues that earlier versions of Foremost had was that some

formats (including PDF) often have multiple footers. This creates an obvious problem:

how to determine which footer actually represents the end of the file. As a result

Kornblum and Kendall developed a REVERSE search mechanism [Ref. 12] to allow

them to find the last footer found in a given buffer. The REVERSE method essentially

looked for the last footer in the buffer and associated it with the given header. This

proved to be successful some of the time, but severely degraded its usefulness as the

buffer size grew. Often multiple PDF files would be extracted as one file. In other cases,

the footer appended was that of a corrupted PDF, causing the extracted file to be un-

readable.

Further research of the PDF file specification revealed that a PDF contains

multiple footers only if it has been “linearized”. [Ref. 11] A linearized PDF file is one

21

that has been organized in a special way to enable efficient incremental access in a

network environment. Thus linearized PDF files are very common.

The PDF extraction function searches for the keyword “Linearized” in the header.

If it is found, then the length of the file is stored in the header preceded by a “\L ”

character sequence. This approach obviously increases the speed of Foremost as the

program no longer needs to crunch through the entire PDF attempting to guess where it

terminates. In this case, the function simply performs a search for the “\L” sequence and

parses the number that follows, which is the file size in bytes. See Figure 4 for a

structural description of a Linearized PDF.

.

Figure 4. Linearized PDF (From Ref. [11])

The PDF file format is more reminiscent of an XML document than a traditional

binary document. This is why the common approach of being able to jump among data

structures does not apply to this format. However, since linearized PDF files are

22

becoming more prevalent, this algorithm will perform very quickly since the file size for

this kind of file is often found within the first 100 bytes and no more file processing is

necessary to extract these files which are often on the order of several megabytes in size.

Even when a file is not linearized the heuristic performs well in terms of

successful extraction because of the unique trailer defined by the PDF specification

(%%EOF). Hence a straight forward Boyer Moore search (described further in Chapter

III) for the end of the file can be performed. This approach was successfully used to

extract PDF’s prior to PDF version 1.2 because the Linearized capability was not

implemented.

Some minor error checking is also implemented. The first 100 bytes must include

an “obj” tag, the fundamental storage tag for all PDF elements. An example of a non-

linearized header is given below in Figure 5. Notice that the obj reference is still intact in

this case making it a valuable marker to determine whether or not the file has been

corrupted.

Offset Hexadecimal ASCII

00 25 50 44 46 2D 31 2E 33 0A 25 C7 EC 8F A2 0A 36 %PDF-1.3.%Çì�¢.6

16 20 30 20 6F 62 6A 0A 3C 3C 2F 4C 65 6E 67 74 68 0 obj.<</Length

32 20 37 20 30 20 52 2F 46 69 6C 74 65 72 20 2F 46 7 0 R/Filter /F

48 6C 61 74 65 44 65 63 6F 64 65 3E 3E 0A 73 74 72 lateDecode>>.str

64 65 61 6D 0A 78 9C AD 5A 49 73 eam.xœ-ZIs

Figure 5. Non Linearized Header

3. JPEG

JPEG stands for Joint Photographic Experts Group, which is a standardization

committee. It also stands for the compression algorithm that was invented by this

committee. To complicate things a bit more, JPEG compressed images are often stored in

a file format called JFIF (JPEG File Interchange Format). JPEG data structures are

composed of segments that are marked by identifiers [Ref. 13]. A listing of these

markers is provided in Table 5. Each of these markers is preceded by a byte which

23

equals “0xff”. For example a common JPEG header may look like “0xff d8 ff e0 00 10

4a 46 49 46” (Hexadecimal), this is the simple case. The old method, implemented in

earlier versions of Foremost, of grabbing a file based on header and footer information

works well.

Marker Name Marker Identifier Description

SOI 0xd8 Start of Image
APP0 0xe0 JFIF application segment
APPn 0xe1 – 0xef Other APP segments
DQT 0xdb Quantization Table
SOF0 0xc0 Start of Frame
DHT 0xc4 Huffman Table
SOS 0xda Start of Scan
EOI 0xd9 End of Image

Table 5. JPEG Marker Information (After: Ref.[13])

However, with the advent of digital cameras and the introduction of changes to

the JPEG [Ref. 14] specifications, this method is no longer satisfactory. The new formats

now allow for multiple headers, footers and even nested images, to support thumbnails

for example. Digital cameras often utilize the APP segment marker “0xe1” to signify

that they include more meta-data than the standard JFIF. Table 6 shows the hexadecimal

representation of a JPEG taken from a Cannon digital camera; notice that the JPEG

header repeats itself in the first block. The footers are also repeated for a total of 3

header/footer pairs in this specific file. Most tools that use the header/footer method of

extraction, will extract three files out of this one image, one of those being a valid

thumbnail while the others will appear as corrupt. For these reasons a more intelligent

algorithm must be provided.

However, these compound formats still adhere to the common JFIF header

structure. Thus even multiple headers and footers pose no problems to the

implementation described below. Complex files can even increase the speed of the

algorithm because, as more of the data can be skipped, less to be processed via the Boyer-

Moore algorithm.

24

Offset Hexadecimal View of JPEG Data

0 ff d8 ff e0 00 10 4a 46 49 46 00 01 02 01 00 48

10 00 48 00 00 ff e1 0b d5 45 78 69 66 00 00 4d 4d

20 00 2a 00 00 00 08 00 0a 01 0f 00 02 00 00 00 06

180 00 00 00 01 00 00 00 48 00 00 00 01 ff d8 ff e0

190 00 10 4a 46 49 46 00 01 02 01 00 48 00 48 00 00

be0 49 15 32 49 45 24 94 ff 00 ff d9 ff ed 10 4c 50

1160 5f 00 18 00 01 ff d8 ff e0 00 10 4a 46 49 46 00

1bc0 ff 00 ff d9 00 38 42 49 4d 04 21 00 00 00 00 00

Table 6. Canon Digital Camera JPEG representation

The JPEG extraction algorithm exploits the fact that each JPEG marker contains

the size of the header that the marker identifies. This allows the algorithm to jump from

header to header until an invalid header is reached. If the file is a valid JPEG then the

last marker parsed will be the SOS (Start of Scan) marker which signifies the beginning

of the actual image data. Once this marker is reached then a Boyer Moore search for the

“0xff d9” marker (which signifies the EOF) ensues.

With this ability to parse the JPEG data structures, our enhanced version of

Foremost can now perform some error checking to ensure the file being extracting has

not been corrupted. For instance each JPEG image must contain a Huffman Table

marker as well as a Quantization Table, these checks are simple, efficient, and reduce the

amount of information that the forensic examiner must process manually.

This method of extraction increases the accuracy of extraction as well as the

speed as entire headers are skipped instead of being processed by the searching

algorithm. Headers are kilobytes in size, so the fact that they are parsed rather than

searched and interpreted byte by byte offers significant computational savings.

25

4. GIF
The Graphics Interchange Format (GIF) defines a protocol intended for the on-

line transmission and interchange of raster graphic data in a way that is independent of

the hardware used in their creation or display. There are two common versions of this

format the 87a and 89a revision [Ref. 15]. This format has remained unchanged for the

last decade and thus has proven to be a rather easy file to extract. It is one of the few

which has a defined header and footer. Both of which occur only once in the file. Thus

header and footer information is sufficient to successfully extract these files.

Table 7 illustrates header and footer information from a common GIF image. The

GIF extraction algorithm searches for the unique string “\x47 \x49 \x46 \x38” (GIF8),

once this is reached further tests are performed to determine if it is in fact a valid GIF file

and whether it is revision 87a or 89a. Once this validation is performed a Boyer Moore

search is ensues to find the unique “\x00 \x3b” identifier to determine the end of the GIF

stream.

Offset Hexadecimal

0 47 49 46 38 39 61 6c 02 22 03 a2 00 00 ff ff ff

 …

48e0 60 05 5c 02 00 00 3b 00

Table 7. GIF File Format

The only improvement we made to this extraction method is the fact that each

version is analyzed in one pass through the data. Previous versions of Foremost would

have to do independent searches for each header (87a and 89a). These are combined in

the enhancement so search time is reduced by not analyzing the same information

multiple times.

26

5. BMP (Windows Bitmap Files)
A BMP (Windows Bitmap File) [Ref. 16] is comparatively one of the more trivial

files to successfully extract. Table 8 shown below illustrates the information provided in

a BMP header. Notice the bfSize field in bold print, as this is the size of entire file in

bytes. This is located at the offset 2 in the file! It may seem that extraction can be

performed once this information is determined but additional checks must be provided to

help ensure that the file being extracted is indeed valid BMP. The fact that header is only

marked by two bytes “\x42 \x4d” (BM) means that a lot of false positives will be handed

to the extraction function so a lot of “sanity” checking must be performed. Thus the

horizontal and vertical sizes of the BMP are checked to see if they are reasonable values.

If they are, then we have an added level of assurance that the file is indeed a Bitmap.

More error checking could be added to take advantage of the data in the rather large

header BMP files provide.

27

Offset Field Size Contents
0000h Identifier 2 bytes ‘BM’ - Windows 3.1x, 95, NT, …
0002h File Size 1 dword Complete file size in bytes.
0006h Reserved 1 dword Reserved for later use.
000Ah BitmapData

Offset
1 dword Offset from beginning of file to the beginning of the bitmap data.

000Eh Bitmap Header
Size

1 dword Length of the Bitmap Info Header used to describe the bitmap colors,
compression, … The following sizes are possible:
28h - Windows 3.1x, 95, NT, …
0Ch - OS/2 1.x
F0h – OS/2 2.x

0012h Width 1 dword Horizontal width of bitmap in pixels.
0016h Height 1 dword Vertical height of bitmap in pixels.
001Ah Planes 1 word Number of planes in this bitmap.
001Ch Bits Per Pixel 1 word Bits per pixel used to store palette entry information. This also

identifies in an indirect way the number of possible colors. Possible
values are:

001Eh Compression 1 dword Compression specifications. The following values are possible:
0 - none (Also identified by BI_RGB)
1 - RLE 8-bit / pixel (Also identified by BI_RLE4)
2 - RLE 4-bit / pixel (Also identified by BI_RLE8)
3 - Bitfields (Also identified by BI_BITFIELDS)

0022h Bitmap Data
Size

1 dword Size of the bitmap data in bytes. This number must be rounded to the
next 4 byte boundary.

0026h HResolution 1 dword Horizontal resolution expressed in pixel per meter.
002Ah VResolution 1 dword Vertical resolution expressed in pixels per meter.
002Eh Colors 1 dword Number of colors used by this bitmap. For a 8-bit / pixel bitmap this

will be 100h or 256.
0032h Important Colors 1 dword Number of important colors. This number will be equal to the number

of colors when every color is important.
0036h Palette N * 4 byte The palette specification. For every entry in the palette four bytes are

used to describe the RGB values of the color in the following way:

0436h Bitmap Data x bytes Depending on the compression specifications, this field contains all the
bitmap data bytes which represent indices in the color palette.

Table 8. BMP Header Information(After: Ref. [16])

An example of a bitmap header is given in Table 9 showing that the file size

according the bytes 2-6 is 163,878 which has the hexadecimal representation “0x26 0x80

0x02 0x00” in little endian format. Also highlighted are the horizontal and vertical sizes

of the BMP located at offsets 18 and 22 in the file. With this information we can deduce

that the Bitmap is 400x407 pixels which is a reasonable value for a bitmap image. As

noted previously these are invaluable for error detection.

28

Offset Hexadecimal

0 42 4d 26 80 02 00 00 00 00 00 36 04 00 00 28 00

16 00 00 90 01 00 00 97 01 00 00 01 00 08 00 00 00

32 00 00 f0 7b 02 00 20 2e 00 00 20 2e 00 00 00 01

48 00 00 80 00 00 00 00 00 00 00 73 73 73 00 29 23

64 28 00 ce be bf 00 b5 a2 a5 00 0f 09 0e 00 52 4c

80 51 00 9d 8a 8d 00 49 39 3a 00 d7 d4 d0 00 62 5c

Table 9. BMP Header in hexadecimal

The previous version of Foremost would merely check for the BM header and

then dump the next 50KB into a file and make the examiner determine the EOF. The

current implementation is an obvious improvement as the examiner can simply look at

the files content in an image viewing application as opposed to trying to interpret

hexadecimal values and deduce file specific information from them. This drastically

reduces the examiners workload because the majority of data they are looking for may be

graphical in nature, especially in cases where pornography is involved.

6. MOV (QuickTime Movie files)
A QuickTime file [Ref. 17] is simply a collection of atoms, the basic data

structures of the file. QuickTime does not impose any rules about the order of these

atoms. This allows for ease of concatenation when editing movie files. See Figure 6 for

a typical structure of a QuickTime movie file.

29

Figure 6. QuickTime Movie Structure (From: Ref. [17])

This modular file format provides flexibility to the application but is difficult to

parse using traditional methods, as no unique marker is used to signify where the file

terminates. However, if the atoms are parsed, the size of each atom is included in the

atom header. This provides the ability to jump from atom header to atom header until an

invalid header is reached. Once this occurs, the EOF has been determined. This method

also is highly optimized as MOV files are often large.

Another problem, the flexibility QuickTime files creates, is the fact that the

structure of the headers can vary somewhat. The standard atom header is of type ‘moov’

but modern digital cameras implement what is called VJPEG (Video JPEG) format which

uses the atom type ‘pnot’ as the first atom in the file. For this reason these two extraction

methods are performed separately but will both be invoked when searches for

“multimedia” files are performed.

Notice from Figure 6 that the same format of length, then type, and then data

(value) is used as the basic structure of an atom. Table 10 provides a step by step walk

through of how a MOV file is parsed through iteration of the extraction function. The

30

test case was a VJPEG file that was 9,275,716 bytes in size. Each iteration shows that the

first four bytes of the header contains the header size in big endian format while the

remaining four bytes contain the type of the atom in ASCII text.

The first iteration determines main header information located at offset 0. The

size of the header is extracted (in this case 20) and then the file pointer is moved

accordingly to offset 20. At offset 20 a PICT atom is located and is 6196 bytes in size.

Jumping again to offset 6216 is the main data portion of the MOV file which is of type

“mdat”. All valid MOV files must contain this atom; therefore, it is used as an error

checking mechanism to determine if the file to be extracted is intact. The last atom is of

type “moov” which is the standard header for most MOV files, but as shown here can be

included anywhere in the file. Jumping the size of the “moov” atom puts the file pointer

at the end of the file. Summing the size of each atom yields an original file size of

9,275,716 bytes.

Header# Size Type Header in Hexadecimal
0 20 pnot 0 0 0 14 70 6e 6f 74
1 6196 PICT 0 0 18 34 50 49 43 54
2 9266184 mdat 0 8d 64 8 6d 64 61 74
3 3316 moov 0 0 c f4 6d 6f 6f 76
Total 9275716
Table 10. MOV Extraction Algorithm Step-through

7. WMV (Windows Media Video)

Windows Media Video/Windows Media Audio files use the ASF file format[Ref.

18]. The Advanced Streaming Format (ASF) is an extensible file format designed to

store synchronized multimedia data. It supports data delivery over a wide variety of

networks and protocols while still proving suitable for local playback. ASF supports

advanced multimedia capabilities including extensible media types, component

download, scaleable media types, author-specified stream prioritization, multiple

language support, and extensive bibliographic capabilities, including document and

content management.

31

The invaluable (for us) data structure in the ASF format contains the header

“0xA1 DC AB 8C 47 A9”. The structure beginning with this header contains the file

properties object header and the file size (in bytes). Thus it can be used to determine the

EOF. This header is often found within the first 512 bytes of the file and thus processing

often extremely large WMV/WMA files is avoided. See the Figure 7 below for a

description of the ASF format.

Figure 7. ASF File Structure (From: Ref. [18])

Header Object

File Properties Object

Stream Properties Object 1

…
Stream Properties Object N

<Other header objects>

Data Object

Data Packet 1

…
Data Packet M

<Other top-level objects>

Index Object 1

…
Index Object K

Simple Index Object 1

…
Simple Index Object L

32

The basic idea behind the algorithm we use to parse these files is that once the file

header is found ("\x30\x26\xB2\x75\x8E\x66\xCF\x11"), a search for the file properties

header which contains the file size information is executed. This is shown in Table 11

below. Once the file properties object has been located, the file size is located at offset

40 within the object. This information helps determine the end of the file. The trick is

that the file properties object can be located at various offsets throughout the beginning of

the file, which is why a search for the header ID must be used to determine its location.

Name Size (bytes)
Object ID 16
Object Size 8
File ID 16
File Size 8
Creation Date 8
Data Packets Count 8
Play Duration 8
Send Duration 8
Preroll 8
Flags 4
Minimum Data Packet Size 4
Maximum Data Packet Size 4
Maximum Bitrate 4

Table 11. ASF File Properties Object Structure (After: Ref. [18])

See Table 12 below for a sample header of a WMV file and the import values in

bold. Once the file properties object is found at offset 69, we know from the structure of

the file properties object that the file size is stored at offset 109 in an eight byte value in

little endian format. Thus a simple pointer addition can be used to arrive at the file size

of the WMV.

33

Offset Hexadecimal

0 30 26 b2 75 8e 66 cf 11 a6 d9 00 aa 00 62 ce 6c

16 d3 03 00 00 00 00 00 00 09 00 00 00 01 02 ce 75

32 f8 7b 8d 46 d1 11 8d 82 00 60 97 c9 a2 b2 26 00

48 00 00 00 00 00 00 02 00 01 00 90 47 00 00 02 00

64 18 4b 01 00 a1 dc ab 8c 47 a9 cf 11 8e e4 00 c0

80 0c 20 53 65 68 00 00 00 00 00 00 00 d7 51 ed 1c

96 16 91 5e 4a bd db fe 9e eb 31 e3 da 98 1b 6c 00

112 00 00 00 00 e0 03 79 3e d0 c6 c1 01 75 15 00 00
Table 12. ASF Header in Hexadecimal

This added knowledge of the internal data structures has provided us the means to

enhance Foremost so that it can avoid searching through, in many cases, megabytes of

information to determine a files endpoint. Previous versions of Foremost provide no

support for WMV/WMA files. This new ASF capability opens the door to the

multimedia files. This will aide in the prosecution of pornography cases. In addition,

with the increasing popularity of WMA files for pirating music Foremost 1.0 can be a

useful tool in the prosecution of copyright violations.

8. ZIP
Zip files often contain multiple embedded files of varying formats; these are

structured in an incremental fashion, followed by a “central directory structure”. ZIP

archives are a standard format for compressing and storing multiple files. Each file

contained within the zip has its own valid ZIP header with its compressed and

uncompressed data sizes stored within it. This information can be exploited to increase

the speed of the extraction of ZIP files.

34

 [local file header 1]
 [file data 1]
 [data descriptor 1]
 .
 .
 .
 [local file header n]
 [file data n]
 [data descriptor n]
 [central directory]
 [zip64 end of central directory record]
 [zip64 end of central directory locator]
 [end of central directory record]

Figure 8. Basic Zip File Structure (From Ref. [19])

The algorithm works incrementally by parsing each local file header, using the

compressed size field located at offset 20. This value is then used to jump to the next

local file header. Once all the files headers have been analyzed then a Boyer Moore

search for the identifier of the end of the central directory record is conducted. Once this

object is located (the structure is given in Table 13) the algorithm then reads the length of

the comment field and jumps to that value plus the size of the object (20 bytes). The

result is the end of the zip file.

Field Description Size
central file header signature 4 bytes

(0x02014b50)
version made by 2 bytes
version needed to extract 2 bytes
general purpose bit flag 2 bytes
compression method 2 bytes
last mod file time 2 bytes
last mod file date 2 bytes
crc-32 4 bytes
compressed size 4 bytes
uncompressed size 4 bytes
filename length 2 bytes
extra field length 2 bytes
file comment length 2 bytes
disk number start 2 bytes
internal file attributes 2 bytes
external file attributes 4 bytes
relative offset of local header 4 bytes

Table 13. ZIP local file header structure (From Ref.[19])

35

The structure an outline of the central directory structure, is given below in Table

14. The header value “0x50 4b 05 06” is used to flag the beginning of the structure at

which point the comment field is extracted to determine the exact EOF.

Field Description Size
end of central dir signature 4 bytes

(0x06054b50)
number of this disk 2 bytes
 number of the disk with the
 start of the central directory

2 bytes

total number of entries in the
central directory on this disk

2 bytes

total number of entries in the
central directory

2 bytes

size of the central directory 4 bytes

offset of start of central directory
with respect to the starting disk
number

4 bytes

.ZIP file comment length 2 bytes

.ZIP file comment (variable size)

Table 14. End of Central Directory Object Structure (From Ref.[19])

A sample run through of the algorithm is provided below with a zip archive

containing 9 files with a total size 679168 bytes. As show in the Table 15 each iteration

jumps to the next file in the archive. A total of 10 iterations are required because of the

initial zip file header. Each file size is the summation of the compressed file size (located

at offset 20 within the local file header as show in Table 13), the file name length, the

extra length, and the size of the data structure itself (30 bytes). These ten jumps amount

to a total file size of 678439 bytes, there are some peripheral data structures at the end of

the file so a Boyer Moore search is done to find the end of the central directory structure.

This proves trivial as 729 bytes remain after the jump loop takes place, thus the vast

majority of the search overhead is avoided.

36

Header# Size Header in Hexadecimal
0 65002 50 4b 3 4 14 0 0 0 8 0 34 87 30 32 12 16
1 27041 50 4b 3 4 14 0 0 0 8 0 34 87 30 32 49 e2
2 20516 50 4b 3 4 14 0 0 0 8 0 34 87 30 32 ed 65
3 186436 50 4b 3 4 14 0 0 0 8 0 34 87 30 32 c5 15
4 17202 50 4b 3 4 14 0 0 0 8 0 34 87 30 32 2d 72
5 259494 50 4b 3 4 14 0 0 0 8 0 34 87 30 32 06 0f
6 39482 50 4b 3 4 14 0 0 0 8 0 34 87 30 32 33 b1
7 55707 50 4b 3 4 14 0 0 0 8 0 35 87 30 32 25 6f
8 7143 50 4b 3 4 14 0 0 0 8 0 35 87 30 32 47 77
9 416 50 4b 3 4 14 0 0 0 8 0 35 87 30 32 21 8b
Total 678439

Table 15. ZIP extraction algorithm step-through

Obvious improvement can be seen implementing this extraction method as

opposed to traditional methods. Much of the searching burden is relieved by the ability

to merely jump to each file objects until only a few small data structures remain to parse.

Comparing this to the previous method which Foremost used is not even worthy of

comparison as the speed of extraction is increased exponentially. Since zip files have no

well defined footer, the examiner was previously forced to attempt to determine where

the file ended by incrementally extracting more of the file and running zip decompression

algorithms against it. This is time consuming and should be avoided if possible.

9. GZIP
 The GZIP file format is recursive in nature as it is merely processed until the

decompression algorithm completes. No notion of the original data size is given to the

algorithm, therefore in order to fully support the extraction of GZIP files a decompression

algorithm must be incorporated into Foremost. Currently this introduces system

dependent issues and is left as future work. However, a simplified extraction method is

possible with marginally good results.

 The GZIP header value is equal to “0x1f 8B” which is used to identify the file as

a gzip file. This identifier is followed by a one byte value which identifies the

compression method used in the file. CM = 0-7 are reserved. CM = 8 denotes the

"deflate" compression method, which is the one customarily used by gzip. If this

37

information is parsed and verified to be a gzip header with some degree of assurance we

can then jump to the end of the header and search for the string “\x00 \x00 \x00 \x00”.

This works reasonably well as files in the GZIP format do not write blocks of zero’s in

the data portion of the file, however empty sectors on the disc usually contain all zeros.

The fact that this often overshoots the end of the file in most cases is irrelevant since the

decompression algorithm ignores extraneous information, the file will inflate without a

problem.

Offset Hexadecimal

0 1F 8B 08 08 E6 38 BA 3B 00 03 69 74 73 34 2D 31
Table 16. GZIP Header in Hexadecimal

The GZIP file format is most common on a UNIX platform and is therefore a

valuable commodity to open source tools that analyze such environments. This algorithm

while still a “best effort” provides support for a format that was not supported in older

versions of Foremost. The method is still the same in terms of using basic header and

footer information to deduce the file size. However, the error checking capabilities in

terms of checking to see if the header contains reasonable values significantly reduces the

number of false positives generated by the program.

10. RIFF
 The RIFF file structure is used by various file formats, most notably AVI

(Audio/Video Interleaved) and WAV. The WAV File Format is a file format for storing

digital audio (waveform) data. This format is very popular as it is most commonly used

in commercial music cd’s. It is also widely used in professional programs that process

digital audio waveforms. WAVE files are often just RIFF files with a single "WAVE"

chunk which consists of two sub-chunks -- a "fmt" chunk specifying the data format and

a "data" chunk containing the actual sample data [Ref. 20]. Table 17 below shows a

sample WAV header stored in the RIFF file structure. The first four bytes indicate the

RIFF file structure, followed by the file size stored in little endian, and finally the WAV

signature indicating that this is indeed a WAV file within the RIFF structure.

38

Offset Hexadecimal Ascii

00 52 49 46 46 B0 A3 01 00 57 41 56 45 66 6D 74 20 RIFF°£..WAVEfmt

16 10 00 00 00 01 00 02 00 44 AC 00 00 10 B1 02 00 D¬...±..

32 04 00 10 00

Table 17. Wave File Header

The Audio/Video Interleaved (AVI) file format is a RIFF file specification used

with applications that capture, edit, and playback audio/video sequences. In general, AVI

files contain multiple streams of different types of data. Most AVI sequences will use

both audio and video streams[Ref. 21]. The AVI RIFF form is identified by the four-

character code “AVI ” as noted below in Table 18. All AVI files include two mandatory

LIST chunks. These chunks define the format of the streams and stream data and are also

used to provide an error checking mechanism to the extraction function.

Offset Hexadecimal Ascii

00 52 49 46 46 8A E7 86 09 41 56 49 20 4C 49 53 54 RIFFŠç†.AVI LIST

16 26 01 00 00 68 64 72 6C 61 76 69 68 38 00 00 00 &...hdrlavih8...

32 6B 04 01 00 C3 DA 34 00 00 00 00 00 10 08 00 00 k...ÃÚ4.........

Table 18. AVI File Header

Extracting an AVI/WAV file is trivial because the file size is stored in the RIFF

file format at offset 4. Thus minimal error checking is required to ensure that the file is

indeed an AVI or a WAV before it is extracted. This type of error checking includes, in

the case of an AVI, the verification that the header contains the LIST chunk a mandatory

portion the file specification.

This algorithm is an obvious improvement over the previous version of Foremost

as WAV files were not supported and AVI files do not contain valid footers, therefore as

we have seen previously the burden is then needlessly placed upon the examiner. Also

the speed of the extraction function is a major enhancement as only the first block of data

needs to be analyzed to determine the actual file size.

39

11. HTML
 Extracting HTML (Hyper Text Markup Language) files requires the challenging

tasks of building heuristics to look at file content as opposed to its data structures.

HTML files are fairly intuitive to extract as they have a defined footer. This is not the

case with most other ASCII files. The main problem in dealing with HTML is the

generation of false positives. To deal with this the new extraction algorithm checks the

first block of the file to ensure it is indeed ASCII printable, this greatly reduces the

number of false positives without checking the entire file byte by byte. With the advent

of XML and CGI scripts, it is not uncommon to see HTML headers within files that are

not HTML at all. Some would argue that these CGI scripts and other binary files are

valuable evidence, thus the traditional method of extraction based on strictly

header/footer data is available via the configuration file of Foremost.

 This method of error detection is somewhat slower than just looking at the

header/footer pair. However, much time is saved by not having to sift through files

which do not appear to be HTML, thus increasing the productivity of the examiner.

Through experimentation it was found that often small portions of CGI scripts are

extracted that only contain the “<html>” and “</html>” tags embedded within the binary

values. The utility of such files is minimal and thus this algorithm attempts to rectify this

problem.

12. CPP (C/C++ Source Code)
 Source code detection could be a useful weapon in the prosecution of hackers

because Foremost could potentially recover some source code that a hacker compiled on

a “victim’s machine”. The detection of C source code is an intriguing task as no well

defined header or footer exists for these types of ASCII text files. Thus a system of

markers and keyword searches is the best method for building a system which can

intelligently extract these files. The fundamental marker that the CPP extraction

algorithm uses is the “#include” statement which must be in source code if it wishes to

use any libraries whatsoever. However this isn’t fool proof; as a C file may contain only

function definitions and be included or linked with another file that contains the #include

statement. In addition many local exploits are short and usually only consist of a single

40

source file. This is a limitation that is accepted as this extraction method can be termed

as a “best effort” method.

 Once the first marker is found then the file is scanned to until a non ASCII

printable character is reached. With this new buffer of information a series of keywords

is then searched for to give added confidence that the data is in fact source code. Other

keywords include “int ”, “char ”, and “#define ”, these strings help build a “score” for the

data and if the file meets the minimum score threshold then it is extracted and deemed

source code. This method works reasonably well but a more sophisticated system must

be implemented to “catch all” of these types of files.

B. SEARCH ALGORITHMS

1. Boyer Moore Description
The Boyer-Moore searching algorithm, described in R. S. Boyer and J. S. Moore's

1977 paper “A Fast String Searching Algorithm” [Ref. 22] is among the best ways

known for finding a substring in a search space. Using their method it is possible to

search a data space for a known pattern without having to examine all the characters in

the search space. This is why it was chosen as the fundamental searching algorithm

employed by Foremost. Boyer-Moore search algorithms are based on two search

heuristics.

The first of these rules tell us how to search for substrings without repeats in a

data space. Keep a pointer into the data space at the current search location; initialize this

pointer to the start of the space plus n - 1 characters where n is the number of characters

in the target string. Compare the character in the data space pointed to by this pointer

with the characters in the target string. If this character does not occur in the target string,

advance the pointer by n places. If the character does occur in the target string, advance

the pointer by n - p places where p is the position that the character in question first

occurs in the target string. This process repeats until either a match is found or we have

shifted past the end of the search space.

The second search heuristic applies to searching for targets with repeating

patterns. Using only the rules set forth in the first heuristic will work for targets with

41

repeating patterns, but the search will not be as efficient as possible. By examining partial

matches and repeats in the target string, though, it is possible to make more drastic

pointer jumps and arrive at the match more rapidly. This type of jump is based on a table

which is computed before the search begins.

Figures 9 & 10 show the improvements Boyer-Moore makes when compared with

brute force search methods. Notice that Boyer-Moore completes the search in less than

half the comparisons of the conventional methods.

Figure 9. Brute Force Search (From Ref. [23])

Figure 10. Boyer Moore Search (From Ref. [23])

42

2. Algorithm Analysis
An analysis of Boyer-Moore shows that vast improvements can be achieved

versus the brute force O(n^2) method. M is equal to the size of the search space and n is

equal to the size of the string. The preprocessing phase has O(m+σ) time and space

complexity, the searching phase has O(mn) time complexity, 3*n text character

comparisons in the worst case when searching for a non periodic pattern, and O(n / m)

best case performance[Ref. 22]. This added performance is the reason this algorithm is

the most popular for performing text searches in many editors, but it also suits the disc

carving purpose because it can be adapted to perform hexadecimal searches as well.

C. INDIRECT BLOCKS

1. UNIX File System Overview
As with other operating systems, files are not necessarily written to disk

contiguously by UNIX file-systems. A file may be stored in several different blocks,

seemingly randomly chosen; however, the blocks do generally adhere to a semi-

contiguous structure. UNIX creates a data structure called an inode to maintain all

relevant information about a file, including which disc blocks the file has been stored on.

Each inode is stored sequentially in an array, so the inode itself does not affect its

corresponding file size. The file system is retrieved during the boot process. The boot

process contains a hard coded inode number, which represents a file location containing a

boot block in memory and inode list [Ref. 24].

UNIX deals with fragmentation by redirecting its inodes. It creates "indirect

blocks" for those inodes pointing to large files, where the file is stored in non-contiguous

blocks on a disk. Those indirect blocks contain the addresses of the blocks containing the

file, and the inode in turn contains the address of that indirect block.

2. Indirect Block Detection

 Indirect block detection is an invaluable tool in successful extraction of files from

a UNIX/LINUX file system. Indirect blocks are used when a file consists of more than

43

twelve blocks and the file system needs to store additional information so that it can keep

track of all the blocks allocated to the file. The ability to detect indirect blocks, use the

information stored in those blocks greatly increases the detection and extraction

capabilities in UNIX file systems. Figure 11 depicts a screenshot from the debugfs

program which shows the blocks that are allocated to a Power Point file. Notice that the

file is larger than 12 blocks, thus it requires the usage of an indirect block (IND) located

at offset 8525813. In this case, as is often the case, IND is contiguous with the rest of the

blocks; however for extraction purposes it must be detected and removed.

Figure 11. Debugfs Screenshot

Using the UNIX program dd, we can view the structure of the indirect block.

Figure 12 shows the actual indirect block used in the example Power Point file. Notice

that each 4 byte chunk is the location of the remaining blocks allocated to the file. The

file system uses this information in order to rebuild the file before giving it to the

operating system. The fact that these blocks are usually increasing and fairly close

together can be exploited by a heuristic function which detects and removes indirect

blocks. The algorithm works by first analyzing the structure of the indirect block to

verify that it is not simply part of the file. Verification of increasing offsets followed by a

variable amount of 0’s occurs. Then the differences between each offset is checked to

determine whether they exceed a given threshold value to add assurance that the block

under study is an indirect block. If a difference exceeds one, meaning that the offsets are

44

not contiguous then following logic ensues in an attempt to rebuild the file before it is

handed off to the extraction algorithms.

Figure 12. Indirect Block Screenshot

One of the main problems with indirect block detection is the fact that often tools

like Foremost are used on fragments of a disc. These may include just unallocated space,

slack space, or maybe only a portion of a valid file-system is recoverable. In any case the

offsets located in the indirect block cannot be trusted as they only hold true if the entire

file-system is intact. Therefore, some assumptions must be made in order to attempt the

reconstruction of non-contiguous files that contain indirect blocks. The first offset listed

in the indirect block is assumed to be one more than that of the indirect block itself

therefore all other offsets can be used relative to that one. Essentially the heuristic uses

the remaining offsets as offsets from the first block listed in the indirect block. This

works reasonably well as many indirect blocks that are not contiguous usually only

contain one or two blocks that are not in order. Thus as long as the first block listed is

contiguous, the algorithm performs with great success.

Another problem is the fact that the block size isn’t the same across various UNIX

file sizes. Thus the most common block size of 4096 bytes is tried first to see if the block

45

meets the detection algorithm’s specifications. Failing that, then other common block

sizes must be tried in order to attempt to determine what the actual block size is. This

may also be accomplished by having a user defined block size, if the user knows the

specific file system used, such as UFS, EXT2, or EXT3.

File system vendors often trump security for speed. This is why files are often not

overwritten when they are deleted but merely have their meta-data moved to unallocated

space. The EXT3 file system actually does delete the inodes and indirect blocks of a file.

Some may argue that this trend negates the need for indirect block detection. But the

heuristic if often useful in the case where only a portion of the file-system may be

recoverable, thus leaving some indirect blocks in tact.

No data carving tool has addressed the need for indirect block detection. On

UNIX file-systems the advantages are huge as, files such as office documents,

multimedia, archive, and even images routinely use more than 12 blocks, thus extraction

algorithms will fail. As operating systems such as Linux increase in popularity the use of

EXT2/EXT3 file-systems will increase so and so will the need for these types of

algorithms which can interpret the data stored in indirect blocks. See the indirect block

section in chapter four for examples of how indirect block detection improves successful

extraction of various files.

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

IV. EXPERIMENTAL RESULTS

A. OVERVIEW
The tools used in this comparison include FTK, ILOOK, the original version of

Foremost, and the modifications to Foremost presented in this paper. For testing

purposes the implementation of the tool described in this paper will be referred to as

Foremost 1.0.

Version 1.5 of FTK, the version current at the writing of this document, supports

the following file formats: BMP, GIF, JPEG, EMF, PDF, HTML, AOL, and OLE. The

capabilities of this product performed very well in experimental test cases. However,

FTK only allows for carving of unallocated space thus it will not be used in the test cases

as it wouldn’t provide a fair comparison with products that analyze an entire disc image.

However, the tool seems to use an approach similar to the one described in this paper.

ILOOK supports far more file formats than FTK but with varying success. It

even provides multiple versions of extraction algorithms for the same file format. This is

mainly because ILOOK can incorporate new file signatures into its data carving

mechanism. For example, ILOOK contains three different extraction methods for

carving JPEG files. Testing these algorithms showed that they perform relatively well

but they do not catch everything and they perform at varying speeds. Overall this tool

performs well but it definitely emphasizes quantity of output over quality. This can

potentially become burdensome for an analyst.

B. NTFS
Brian Carrier, the main Sleuthkit developer, created a 10MB test image for testing

forensic tools ability to extract jpeg data. The image is an NTFS partition containing the

files listed in Table 19 below. Through experimentation it was discovered that NTFS

does a very good job of storing files in contiguous memory blocks. This makes the disc

carving process much easier than dealing with the indirect blocks of UNIX files systems.

The MD5 of the image is “9bdb9c76b80e90d155806a1fc7846db5” and it can be

downloaded at http://dftt.sourceforge.net/test8/. This image was used because of its

48

availability and to demonstrate the utility of the JPEG algorithm described previously in

addition to ZIP, GZIP, and OLE extraction capabilities.

Num Name MD5 Note

1 alloc\file1
.jpg

75b8d00568815a36
c3809b46fc84ba6d A JPEG file with a JPEG extension

2 alloc\file2
.dat

de5d831533399313
71719f4e5c924eba A JPEG file with a non-JPEG extension

3 invalid\fil
e3.jpg

1ba4e91591f0541e
da255ee26f7533bc A random file with a JPEG extension

4 invalid\fil
e4.jpg

c8de721102617158
e8492121bdad3711

A random file with 0xffd8 as the first two bytes (the
JPEG header signature). There is no JPEG footer or
other header data.

5 invalid\fil
e5.rtf

86f14fc525648c39
d878829f288c0543

A random file with the 0xffd8 signature value in
several locations inside of the file.

6
del1\file6.
jpg - MFT
Entry #32

afd55222024a4e22
f7f5a3a665320763 A deleted JPEG file with a JPEG extension.

7
del2\file7.
hmm - MFT
Entry #31

0c452c5800fcfa7c
66027ae89c4f068a A deleted JPEG file with a non-JPEG extension.

8 archive\fil
e8.zip

d41b56e0a9f84eb2
825e73c24cedd963

A ZIP file with a ZIP extension and a JPEG picture
named file8.jpg inside of it.

 file8.jpg f9956284a89156ef
6967b49eced9d1b1

A JPEG file that is inside of a ZIP file with a ZIP
extension.

9 archive\fil
e9.boo

73c3029066aee941
6a5aeb98a5c55321

A ZIP file with a non-ZIP extension and a JPEG
picture named file9.jpg inside of it.

 file9.jpg c5a6917669c77d20
f30ecb39d389eb7d

A JPEG file that is inside of a ZIP file with a non-ZIP
extension.

10 archive\fil
e10.tar.gz

d4f8cf643141f0c2
911c539750e18ef2

A gzipped tar file that contains a JPEG picture named
file10.jpg .

 file10.jpg c476a66ccdc2796b
4f6f8e27273dd788 A JPEG file that is inside of a gzipped tar file.

11 misc\file11
.dat

f407ab92da959c7a
b03292cfe596a99d

A file with 1572 bytes of random data and then a JPEG
picture. This was created using the '+' option in the
Windows copy.exe tool.

12 misc\file12
.doc

61c0b55639e52d1c
e82aba834ada2bab A Word document with the JPEG picture inside of it.

13 misc\file13
.dll:here

9b787e63e3b64562
730c5aecaab1e1f8 A JPEG file in an Alternate Data Stream.

Table 19. Brian Carriers JPEG test image files (From Ref. [25])

After running ILOOK against the image the following files were extracted. Note

that since the image is a valid NTFS partition ILOOK has the capability to mount the

49

image and extract files via the meta-data. Note that this is not relevant to the disc carving

capability of the tool. ILOOK uses a customizable database of file signatures to “carv”

data. In essence it takes the same approach as Foremost 0.69 in that only header and

footer data seems to be analyzed. Although this cannot be verified without the source

code it seems that ILOOK uses a file size limit of 102,400 bytes for JPEG which explains

why all files greater than that threshold were truncated.

Num Name MD5 Size Note

1 530.jpg f41b83ecabe49a70
752dca82020f2e3b

102,400 This file is truncated

2 1066.jpg ad869aa50da6e2976562
b2fb9356b12b

102,400 This file has been truncated

3 1705.jpg a5131a3a619edcdcd15d
2c134ad41da7

102,400 Truncated Picture #3

4 6688.jpg b957180a0b411aba6b2
e9a9f0d68bdc6

102,400 This file has been truncated

5 10056.jpg dac28876682e92996de
3b4aaa5bdf96b

26,112 Valid JPEG #2

6 10810.zip a795b3d16f47a03f4f7f5
54b84ee3949

335,360 Corrupted

7 11466.zip 7d9e23b2e48f768f46a4
27de9d50e949

294,400 Valid archive containing picture #6

Table 20. ILOOK results from NTFS sample image

After running the traditional version of Foremost (0.69) the following files were

extracted (See Table 21 below). The older version of Foremost performed reasonably

well against an image consisting mostly of simple jpeg files. In addition since only one

OLE document was included in the image Foremost 0.69 was able to extract the Word

Document using its NEXT search capability. The NEXT search capability allows

Foremost to use the header as the footer, this approach relies on the fact that OLE

documents are often written in relatively close memory space. Since they are sometimes

written in groups the header of the NEXT document can be used to determine the EOF of

the current document. This method works pretty well for small images but severely

degrades as images grow and documents become more spread out.

50

Num Name MD5 Size Note

1 00000000.jpg 75b8d00568815a36c380
9b46fc84ba6d

274260 Valid picture #1
(Matches MD5)

2 00000001.jpg 0c452c5800fcfa7c66027
ae89c4f068a

326859 Valid picture #4
(Matches MD5)

3 00000002.jpg afd55222024a4e22f7f5a
3a665320763

175630 Valid picture #3
(Matches MD5)

4 00000003.jpg 7fc3954d980a643e9eafd
62e053cb075

1681986 Corrupted picture #10

5 00000004.jpg de5d8315333993137171
9f4e5c924eba

26081 Valid picture #2
(Matches MD5)

6 00000005.jpg 35c9da622659465956cf
2d210c89bf07

271181 Valid picture #8

7 00000006.jpg 936d202fbedecbe64b42
c5f3d03233e5

110373 Valid picture #9

8 00000007.doc 4bf26623e510df480200
56fc0ec6d665

154624 Word doc containing picture #9

9 00000008.doc 3c17730f7e132f751015
d025b0f20ef0

3696640 Invalid Word Document

Table 21. Foremost (0.69) results from NTFS sample image

Results from Foremost 1.0 are provided in Table 22 below. Note the only file that

could not be fully extracted is the one located in the alternate data stream as the data

portion of the file is not contiguous. The fact that 7 of 11 files matched their original

md5 hash shows the precision that tailored extraction heuristics offers the disc carving

arena. This is an obvious improvement over the 4 files matched by Foremost 0.69

matched and the single md5 matched by ILOOK.

51

Num Name MD5 Size Note

1 00530.jpg 75b8d00568815a36c380
9b46fc84ba6d

274260 Valid picture #1
(Matches MD5)

2 01066.jpg 0c452c5800fcfa7c66027
ae89c4f068a

326859 Valid picture #4
(Matches MD5)

3 01705.jpg afd55222024a4e22f7f5a
3a665320763

 175630 Valid picture #3
(Matches MD5)

4 06688.jpg 7fc3954d980a643e9eafd
62e053cb075

1681986 Corrupted picture #10

5 10056.jpg de5d8315333993137171
9f4e5c924eba

26081 Valid picture #2
(Matches MD5)

6 10405.gz d4f8cf643141f0c2911c5
39750e18ef2

207272 tar ball containing picture #7
(Matches MD5)

7 10810.zip d41b56e0a9f84eb2825e
73c24cedd963

335371 Archive containing picture #5
(Matches MD5)

8 11466.zip 73c3029066aee9416a5a
eb98a5c55321

 294124 Archive containing picture #6
(Matches MD5)

9 12044.jpg 35c9da622659465956cf
2d210c89bf07

271181 Valid picture #8

10 12574.doc 0572c54544b657477eeb
b25df6cef12c

132096 Word doc containing picture #9

11 12583.jpg 936d202fbedecbe64b42
c5f3d03233e5

110373 Valid picture #9

Table 22. Foremost (1.0) results from NTFS sample image

C. FAT32
The FAT32 image used is a custom 62MB image I created using the mkfs tool. It

was created to display the inadequacies of the current data carving tools and to show how

some simple methods can be used to improve upon them. This image can be downloaded

from Brian Carriers forensic testing site at http://dftt.sourceforge.net/. The drive was also

overwritten with zero’s to ensure that no other data would be present other than the test

images. The first block of the image is also destroyed so that it cannot be mounted.

Listed below in Table 23 are the files contained in the image along with their associated

attributes and description. These provide the data that can be used for comparison among

the different programs.

52

Num Name MD5 Size Note

1 2003_document.doc
e72f388b36f9370f1969
6b164c308482

19968 A Valid DOC file

2 enterprise.wav
7629b89adade055f6783
dc1773274215

318895 A valid WAV file

3 haxor2.jpg
84e1dceac2eb127fef5b
fdcb0eae324b

24367 An invalid JPEG with
only 1 header byte
corrupted.

4 holly.xls
7917baf0219645afef8b
381570c41211

23040 A valid XLS file

5 lin_1.2.pdf
e026ec863410725ba1f5
765a1874800d

1399508
 A linearized PDF

6 nlin_14.pdf
5b3e806e8c9c06a475cd
45bf821af709

122434 A non-linearized PDF

7 paul.jpg
37a49f97ed279832cd4f
7bd002c826a2

29885 A valid jpeg

8 pumpkin.jpg
6c9859e5121ff54d5d62
98f65f0bf3b3

444314
 A valid EXIF jpeg

9 shark.jpg
d83428b8742a075b57b0
dc424cd297c4

99298 A valid JPEG

10 sm1.gif
d25fb845e6a41395adae
d8bd14db7bf2

5498 A valid GIF

11 surf.mov
5328d2b066f428ea95b2
793849ab97fa

550653 A valid MOV

12 surf.wmv ff085d0c4d0e0fdc8f34
27db68e26266

1036994 A valid WMV

13 test.ppt
7b74c2c608d92f4bb76c
1d3b6bd1decc

11264 A deleted PPT

14 wword60t.zip
c0be59d49b7ee0fdc492
d2df32f2c6c6

78899
A valid ZIP

15 domopers.wmv
63c0c6986cf0a446cb54
b0ac65a921a5

8037267
A deleted wmv

Table 23. Sample FAT32 test image

The results from Foremost version (0.69) are shown below in Table 24. Notice

that version 0.69 extracted 6 out of 14 valid files, but it also generated 5 corrupted files or

false positives. Two jpeg images were missed because of a variable JPEG signature

(EXIF) that version 0.69 doesn’t support. In addition the only reason OLE documents

were successfully extracted is because they can contain garbage data at the end of the

document hence the large file sizes that 0.69 extracted. This is why 00000010.doc will

open successfully however it is over 1000 times as large as the original file size of 11,264

53

(test.ppt) bytes. The same holds for the 00000002.doc file which was originally only

19,968 bytes in size, but was ballooned to 8,402,944 bytes by 0.69! This method may be

satisfactory for small files but this type of extraneous extraction really slows down the

program when analyzing larger images. Version 0.69 also extracted a JPEG that had

been purposely corrupted to illustrate such inadequacies. Methods such as these rely on

the examiner to determine what files are readable/corrupted or not. In addition Foremost

0.69 cannot make a distinction between Word Documents and other OLE files thus it

names any OLE file as it were a word document.

Num Name MD5 Size Note

1 00000000.jpg 84e1dceac2eb127fef5bf
dcb0eae324b

24367 Corrupted JPEG

2 00000001.jpg 37a49f97ed279832cd4f
7bd002c826a2

29885 Valid JPEG (paul.jpg)
(matches md5)

3 00000002.doc a4aa85035d929bc5a9bb
b2f2b5e1f2d0

8402944 Valid DOC (2003_document.doc)

4 00000003.doc 32b48b4fd63d7ebae885
f31cc64914f2

3719168 Valid XLS (stats.xls)

5 00000004.pdf 1c4f8da888e2a032afdf7
7b2157d3074

5000000 Invalid PDF

6 00000005.gif a80122dbb804f919b1fb
688acf57782f

63677 Valid GIF (sm1.gif)

7 00000006.jpg 7e0b420a2ea2258b8743
b9abef7c6946

3051 Invalid JPG

8 00000007.jpg 635ed8b379942f6cda5e
6c809c52f8a1

2655 Thumbnail of shark.jpg

9 00000008.jpg 635ed8b379942f6cda5e
6c809c52f8a1

2655 Thumbnail of shark.jpg

10 00000009.mov b8c798ce4204018e35f8
e7e2e749a73d

4000000 Invalid MOV

11 00000010.doc bc20b8af9754d9b0d615
88fdd9fdba0c

12500000 Valid PPT (test.ppt)

Table 24. Foremost (0.69) results from FAT32 sample image

The results from Foremost (1.0) are included in Table 25 below. Version 1.0

successfully recovered all 14 valid files and ignores the corrupted JPEG file (haxor2.jpg).

This method also reduces the amount of redundant processing that version 0.69 does and

speeds up the processing exponentially. 10 out of 14 files match their original md5sum

54

and the rest are no more than a few sectors off from their original size. This adds weight

in a forensic context as the evidence is more precise than version 0.69 which only

matches 1 out of 14 md5 hashes.

Num Name MD5 Size Note

1 19717.jpg 37a49f97ed279832cd4f
7bd002c826a2

29885 Valid JPEG (paul.jpg)
(Matches md5)

2 19777.jpg 6c9859e5121ff54d5d62
98f65f0bf3b3

444314 Valid JPEG (pumpkin.jpg)
(Matches md5)

3 20645.jpg d83428b8742a075b57b0
dc424cd297c4

99298 Valid JPEG (shark.jpg)
(Matches md5)

4 20841.gif d25fb845e6a41395adae
d8bd14db7bf2

5498 Valid GIF (sm1.gif)
(Matches md5)

5 321.wmv 63c0c6986cf0a446cb54
b0ac65a921a5

8037267 Valid WMV (domopers.wmv)
(Matches md5)

6 21929.wmv ff085d0c4d0e0fdc8f342
7db68e26266

1036994 Valid WMV (surf.wmv)
(Matches md5)

7 20853.mov 5328d2b066f428ea95b2
793849ab97fa

550653 Valid MOV (surf.mov)
(Matches md5)

8 16021.wav 4020b55670015ee50672
260efd138aff

318886 Valid WAV (enterprise.wav)

9 281.doc 5ae5cd40c3d07d5df554
b2030a001ebd

20992 Valid Word Document
(2003_document.doc)

10 16693.xls a9bba638866a7f5ba4ba
db727a1628c9

25088 Valid XLS (stats.xls)

11 23957.ppt da30aae8b23194e11302
20d47ceddfed

13312 Valid PPT (test.ppt)

12 23981.zip c0be59d49b7ee0fdc492
d2df32f2c6c6

78899 A valid ZIP file(wword60t.zip)
(Matches md5)

13 16741.pdf e026ec863410725ba1f5
765a1874800d

1399508 A valid PDF (lin_1.2.pdf)
(Matches md5)

14 19477.pdf 5b3e806e8c9c06a475cd
45bf821af709

122434 A valid PDF (nlin_14.pdf)
(Matches md5)

Table 25. Foremost (1.0) results from FAT32 sample image

55

D. EXT2/EXT3
The EXT2 image studied is a 62MB image I created from a USB thumb drive.

This image along with its hash is available via the internet at http://dftt.sourceforge.net/.

The drive was formatted using the mkfs program so that indirect block detection could be

evaluated. After the image was constructed the meta data pertaining to mounting the

image was corrupted to ensure strict carving methods would be used to extract data. The

default block size chosen by the mkfs program is 1024, therefore Foremost 1.0 should

detect single indirect blocks and remove them. Many of the files included in the image

are larger than 12,168 bytes, thus they require at least a single indirect block.

Num Name MD5 Size Note Blocks (bs=1024)

1 haxor2.bmp f9633fe6b9ef2a0a5edd6de
70d22c0f5

163878 A deleted BMP (0-11):2581-2592, (IND):2593, (12-
160):2594-2742

2 jimmy.doc 2f3f914dd74819df42d1d94
1c7275c16

12800 A deleted DOC (0-11):2743-2754, (IND):2755, (12):2756

3 jn.jpg 270a0a913fa9603db8121fd
f78d63aca

28949
A valid JPG

(0-11):2757-2768, (IND):2769, (12-28):2770-
2786

4 lin_test.pdf 1c64456776075d1f0a662e
1f6c09e340

26618 A valid PDF (0-11):2787-2798, (IND):2799, (12-25):2800-
2813

5 main_dive.jpg 937846adb96773ee25fcb34
821230976

8463 A valid jpeg (0-8):2814-2822

6 n_lin_ss.pdf 97be95ed3e710b63bc75e5
c0775062d9

734652

A valid pdf

(0-11):2823-2834, (IND):2835, (12-
267):2836-3091, (DIND):3092, (IND):3093,

(268-523):3094-
3349, (IND):3350, (524-717):3351-3544

7 blogo.gif 5e10b2176016885a85bffc0
74a142524

18663 A valid gif (0-11):2561-2572, (IND):2573, (12-18):2574-
2580

8 sherry.jpg 3834e72d2ee266ccfb9733d
716b89f2b

133249 A valid JPEG (0-11):3545-3556, (IND):3557, (12-
130):3558-3676

9 stats.xls 6351df9c1543c41c3df8eea
63e06a219

15360 A valid XLS (0-11):3677-3688, (IND):3689, (12-14):3690-
3692

10 test.ppt 99941c129cc8cfbadc15c55
086982efc

17408 A valid PPT (0-11):3693-3704, (IND):3705, (12-16):3706-
3710

Table 26. Sample EXT2 Image

The results from Foremost version (0.69) are shown in Table 27 below. The only

file that was successfully extracted by version 0.69 was smaller than 12,168 bytes and

thus didn’t include any indirect blocks. Only one of the file matched its original

56

MD5SUM hash. 4 of the 9 files extracted are at least partially viewable. Most notably

00000001.jpg and 00000000.gif still contain their indirect blocks and thus the latter

halves of the images are not-viewable. Also note that only the thumbnail of sherry.jpg

was extracted because version 0.69 doesn’t adequately recognize an EXIF JPEG. This

example demonstrates the inadequacies of Foremost (0.69) in analyzing a UNIX file-

system.

Num Name MD5 Size Note

1 00000000.gif c36a312216225baff5b0
8bba5dab00e6

19687 Partially corrupted GIF (blogo.gif)

2 00000001.jpg 305b1d7092fe993f35dd
3aa4bc49f283

29973 Partially corrupted JPEG (jn.jpg)

3 00000002.jpg 937846adb96773ee25fc
b34821230976

8463 A valid JPEG(main_dive.jpg)
(matches md5)

4 00000003.jpg 4b4a4fe7392157d8f2bf4
5b3a0238309

7043 Corrupted JPEG

5 00000004.jpg d21f50c6f46d8db20dbf2
34284b70f8f

4905 Thumbnail of (sherry.jpg)

6 00000005.doc 21012bdaf757ce6c68dfc
3fb4184c199

956416 An invalid DOC

7 00000006.doc 93ee406edf4e68f91a5a9
cdddc28132b

16384 An invalid XLS

8 00000007.doc 524124dbbcc6da91d677
f851921f2366

12500000 An invalid PPT

9 00000007.pdf 05739489a3fc08858557
acf69b192497

5000000 An invalid PDF

Table 27. Foremost (0.69) results from EXT2 sample image

The results from Foremost (1.0) are included below in Table 28. The only real

problem version 1.0 ran into is the fact that n_lin_ss.pdf requires a double indirect block

which is not supported in this version. This extension is left as future work. 5 out of 10

MD5SUMS matched and all of the files were at least partially viewable as compared to

the previous version where only 4 files were even partially discernable and only 1

MD5SUM matched. Also note that over half of the files were not readable thus this

causes the examiner for time to manually extract files.

57

Num Name MD5 Size Note

1 5514.jpg 270a0a913fa9603db812
1fdf78d63aca

28949

Valid JPEG (jn.jpg)
(matches md5)

2 5626.jpg 937846adb96773ee25fc
b34821230976

8463 Valid JPEG (main_dive.jpg)
(matches md5)

3 7088.jpg 432a6017f18abca995e0
e708a1ff18b6

133249 Valid JPEG (sherry.jpg)
(matches md5)

4 5122.gif 5e10b2176016885a85bf
fc074a142524

18663 Valid GIF (blogo.gif)
(matches md5)

5 5160.bmp f9633fe6b9ef2a0a5edd6
de70d22c0f5

163878 Valid BMP (haxor2.bmp)
(matches md5)

6 5482.doc b930aaee0c478ad69bc8
63349b7b899d

14848 Valid DOC (jimmy.doc)

7 7344.xls dad72c2effb3aa93c3845
fbc05de6622

17408 Valid XLS (stats.xls)

8 7374.ppt 068114007cde9e94e5aa
4236f0c79e65

19456 A valid PPT (test.ppt)

9 5566.pdf 1c64456776075d1f0a66
2e1f6c09e340

26618 A valid PDF (lin_test.pdf)
(matches md5)

10 5636.pdf 2d4831f8a0c70844a126
d961fca3792b

738748 Partially corrupted PDF(n_lin_ss.pdf)

Table 28. Foremost (1.0) results from EXT2 sample image

This test case shows the case where adding 50 lines of code to a program can

dramatically increase the extraction functionality of a given tool. Granted that indirect

block detection is not an exact science, but it does provide more useful data when

extracting files from a UNIX file system. Sample source code is provided for indirect

block detection in Appendix A.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

V. CONCLUSION

A. SUMMARY
With some study of file format specifications and reverse engineering of propriety

formats, existing disc carving tools can be vastly improved. In addition through

comparison with closed source products this paper has shown that open source tools can

perform just as well, if not better than commercial forensic suites. The methods

outlined in this paper can provide a file system independent program that can take

advantage of file system specific information such as indirect block detection but not use

them as a crutch.

Experimental results provided in this paper as well as those performed on real

world machines have shown the usefulness of developing more sophisticated disc carving

algorithms. As file systems and file formats become more complex so must the

intelligence of these algorithms in order to preserve forensic integrity and utility.

The current implementation of the algorithms described in chapter III can be

viewed in the CVS repository of Foremost at http://sourceforge.net/. At the time of this

paper version 1.0 is in its testing phase, once completed it will be made available at

http://foremost.sourceforge.net/.

B. PROBLEMS

The code, as provided in Foremost version 0.69, is somewhat platform dependent

and needs to be rewritten to encourage portability/modularity to at least other UNIX

platforms if not Windows. The main reason that this code has not been incorporated into

Sleuthkit is the fact that it is very Linux dependent and cannot be easily ported to Solaris

or BSD. Jesse Kornblum (The original author) is rewriting the entire program for this

reason. Once this is complete, the work described in this thesis will be incorporated into

the new version. The inclusion of Foremost into Sleuthkit will give added weight to the

forensic suite and hopefully increase its popularity within organizations that can not

afford expensive Windows based products, or wish to make use of open source solutions.

60

One of the main problems faced in developing a tool such as Foremost is the fact

that the memory of the machine used for analysis is finite. This problem manifests itself

when attempting to extract files that span our “chunk” size. The default chunk size used

by Foremost is 100MB, thus large files are analyzed 100MB at a time. What are the best

methods to “bridge the gap” between chunks while analyzing an image? The easy

answer is to just re-read from the disk every time we find a file near the edge of a chunk,

however, disk reads are inefficient and should be minimized. Foremost 1.0 uses the

“max file size” approach to deal with this problem. A look ahead can be performed to

meet this size. A simpler approach is to use very high end machines with large amounts

of memory. The problem would be reduced as the amount of available memory grows.

C. FUTURE WORK
The creation of a standard library of file specific extraction methods so all

forensic tools can have access to the same robust algorithms to carve data would be a

significant capability for the forensics community. This would allow tools to focus on

other areas of forensic research while having a powerful set of methods to detect and

extract given file formats.

In addition to file recognition, block recognition poses a more complicated

problem. As a file-system becomes more fragmented this will be a technology that must

be employed in an attempt to continue the usefulness of disc carving. This is especially

relevant when taking RAM images into account as paging leaves files seemingly

scattered across the image. If these blocks could be detected and rebuilt to be fed to an

extraction algorithm that can detect valid file formats this would greatly improve live

forensic capabilities.

Improvements of OLE and GZIP extraction methods require more study than is

covered in the scope of this paper. The available documentation of OLE file structure is

limited. Existing methods are in place via the API and programs provided by the Chicago

Project. However, these methods do not provide adequate means to determine the actual

file size. OLE documents are notorious for their garbage data and wasted space. There

are tools available to read and write to this “garbage” area of the file. More research and

61

reverse engineering are needed to be able to track this space so it can be accounted for

when determining file sizes. Our experimentation using the algorithm described

previously shows that one can usually determine file sizes within a block of the actual file

end. This is adequate if the goal is to read the document but doesn’t provide accurate

results in terms of forensics as the extracted data is not identical to the actual file on this

disk.

GZIP file detection lacks functionality without a GZIP decompression algorithm,

as described previously. Such a method incorporated in Foremost would allow for more

accurate extractions as well as the inflation of archived files on the fly.

Single indirect block detection provides a simple and useful tool to aide the

forensic analysis of UNIX file-systems. However, being able to provide additional logic

to rebuild files based on their single as well as double and triple indirect blocks poses a

more challenging problem not addressed in this paper. Such functionality would allow

better analysis of file-systems which employ smaller block sizes thus requiring more

indirect blocks. In addition large multimedia files and documents could be extracted

more efficiently.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

APPENDIX A. SOURCE CODE

This appendix includes all files which were modified in the development of

Foremost 1.0. This version is current as of 3/09/05: please go to

http://foremost.sourceforge.net to get the latest copy. The main intelligence of

Foremost comes from the extract.c file where all the extraction functions are fully

defined.

A. EXTRACT.C
/* extract.c
 * Copyright (c) 2005, Nick Mikus
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * This file contains the file specific functions used to extract
 * data from an image.
 *
 * Each has a similar structure
 * f_state *s: state of the program.
 * c_offset: offset that the header was recorded within the current chunk
 * foundat: The location the header was "foundat"
 * buflen: How much buffer is left until the end of the current chunk
 * needle: Search specification
 * f_offset: Offset that the current chunk is located within the file
 */

#include "main.h"
#include "extract.h"
#include "ole.h"
extern char buffer[OUR_BLK_SIZE];
extern int verbose;
extern int dir_count;
extern int block_list[OUR_BLK_SIZE / sizeof (int)];
extern int *FAT;
extern char *extract_name;
extern int extract;
extern int FATblk;
extern int highblk;

/**
 *Function: extractZIP
 *Description: Given that we have a ZIP header jump through the file headers
 until we reach the EOF.
*Return: A pointer to where the EOF of the ZIP is in the current buffer

64

**/
char* extractZIP(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)
{
 char* currentpos=NULL;
 char* buf=foundat;
 unsigned short comment_length=0;
 char* extractbuf = NULL;
 struct zipLocalFileHeader localFH;
 int bytes_to_search=50*KILOBYTE;
 unsigned long long file_size=0;
 while(1) /*Jump through each local file header until the central directory structure
is reached, much faster than searching */
 {
 if(foundat[2]=='\x03' && foundat[3]=='\x04') /*Verfiy we are looking at a local
file header*/
 {
 localFH.compressed=htoi(&foundat[18],LITTLE_ENDIAN);
 localFH.filename_length=htos(&foundat[26],LITTLE_ENDIAN);
 localFH.extra_length=htos(&foundat[28],LITTLE_ENDIAN);

 /* Sanity checking*/
 if(localFH.compressed > needle->max_len) return foundat+needle->header_len;

 if(localFH.filename_length > 100) return foundat+needle->header_len;

 /*Check if we should grab more from the disk*/
 if(localFH.compressed+30 > buflen-(foundat-buf))
 {
 return NULL;/*Go back grab more and try again*/
 }
 foundat+=localFH.compressed;
 foundat+=30; /*Size of the local file header data structure*/
 foundat+=localFH.filename_length;
 foundat+=localFH.extra_length;
 #ifdef DEBUG
 printf("localFH.compressed:=%d\n",localFH.compressed);
 #endif
 }
 else
 {
 break;
 }
 }
 bytes_to_search=(foundat-buf);
 if(buflen-(foundat-buf) < bytes_to_search)
 {
 bytes_to_search=buflen-(foundat-buf);
 }

 currentpos=foundat;
#ifdef DEBUG
 printf("Search for the footer bytes_to_search:=%d
buflen:=%lld\n",bytes_to_search,buflen);
#endif

 foundat= bm_search(needle->footer,needle->footer_len,foundat,bytes_to_search,needle-
>footer_bm_table,needle->case_sen,SEARCHTYPE_FORWARD);
#ifdef DEBUG
 printf("Search complete \n");
#endif

 if(foundat) /*Found the end of the central directory structure, determine the exact
length and extract*/
 {
 /*Jump to the comment length field*/
#ifdef DEBUG
 printf("distance searched:=%d \n",foundat-currentpos);
#endif

65

 if(buflen-(foundat-buf) > 20)
 {
 foundat+=20;
 }
 else
 {
 return NULL;
 }
 comment_length=htos(foundat,LITTLE_ENDIAN);
 foundat+=comment_length+1;
 file_size = (foundat-buf);
#ifdef DEBUG
 printf("File size %lld\n",file_size);
#endif
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 return foundat;
 }
 if(bytes_to_search > buflen-(currentpos-buf)) return NULL;

#ifdef DEBUG
 printf("I give up \n");
#endif
 return currentpos;
}

/**
 *Function: extractPDF
 *Description: Given that we have a PDF header check if it is Linearized, if so
 grab the file size and we are done, else search for the %%EOF
*Return: A pointer to where the EOF of the PDF is in the current buffer
**/
char* extractPDF(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)
{
 char* currentpos=NULL;
 char* buf=foundat;
 char* extractbuf = NULL;
 unsigned char* tempsize;
 unsigned long int size=0;
 int file_size=0;
 char* header=foundat;
 int bytes_to_search=0;

 foundat+=needle->header_len;/* Jump Past the %PDF HEADER */
 currentpos=foundat;

 /*Determine when we have searched enough*/
 if(buflen >= needle->max_len)
 {
 bytes_to_search=needle->max_len;
 }
 else
 {
 bytes_to_search=buflen;
 }

 /*Check if the buffer is less than 100 bytes, if so search what we have*/
 if(buflen < 512) return NULL;
 else
 {
 currentpos=foundat;
/*Check for .obj in the first 100 bytes*/
 foundat= bm_search(needle->markerlist[1].value,needle-
>markerlist[1].len,foundat,100,needle->markerlist[1].marker_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);
 if(!foundat)

66

 {
#ifdef DEBUG
 printf("no obj found\n");
#endif
 return currentpos+100;
 }
 foundat=currentpos;

/*Search for "./L " to see if the file is linearized*/

 foundat= bm_search(needle->markerlist[2].value,needle-
>markerlist[2].len,foundat,512,needle->markerlist[2].marker_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);

 if(foundat)
 {
 foundat= bm_search(needle->markerlist[0].value,needle-
>markerlist[0].len,foundat,512,needle->markerlist[0].marker_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);
 }
 else
 {
#ifdef DEBUG
 printf("not linearized\n");
#endif
 }
 }

 if(foundat) /*The PDF is linearized extract the size and we are done*/
 {

 foundat+=needle->markerlist[0].len;
 tempsize=(char*) malloc(8*sizeof(char));
 tempsize=memcpy(tempsize,foundat,8);
 size=atoi(tempsize);

 free(tempsize);
 if(size <=0) return foundat;
 if(size > buflen)
 {
 if(size > needle->max_len) return foundat;
 else return NULL;
 }
 header+=size;
 foundat=header;
 foundat-=needle->footer_len;
 /*Jump back 10 bytes and see if we actually have and EOF there*/
 foundat-=10;
 currentpos=foundat;
 foundat= bm_search(needle->footer,needle->footer_len,foundat,needle-
>footer_len+9,needle->footer_bm_table,needle->case_sen,SEARCHTYPE_FORWARD);
 if(foundat)/*There is an valid EOF at the end, Write to disk*/
 {

 foundat+=needle->footer_len+1;
 file_size = (foundat-buf);

 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 return foundat;
 }
 return NULL;

 }
 else /*Search for Linearized PDF failed, just look for %%EOF */
 {
#ifdef DEBUG
 printf(" Linearized search failed, searching %d bytes,
buflen:=%lld\n",bytes_to_search,buflen-(header-buf));

67

#endif
 foundat=currentpos;
 foundat= bm_search(needle->footer,needle-
>footer_len,foundat,bytes_to_search,needle->footer_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);

 if(foundat) /*Write the non-linearized PDF to disk*/
 {

 foundat+=needle->footer_len+1;
 file_size = (foundat-buf);

 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 return foundat;

 }
 return NULL;
 }

}

/**
 *Function: extractCPP
 *Description: Use keywords to attempt to find C/C++ source code
*Return: A pointer to where the EOF of the CPP file is in the current buffer
**/
char* extractCPP(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)
{

 char* header=foundat;
 char* buf=foundat;
 char* extractbuf = NULL;
 int end=0;
 int start=0;
 int i=0;
 int marker_score=0;
 int ok=FALSE;
 int file_size=0;
 char* footer=NULL;

 /*Search for a " or a < within 20 bytes of a #include statement*/
 for(i=0;i<20;i++)
 {
 if(foundat[i]=='\x22' || foundat[i]=='\x3C')
 {
 ok=TRUE;
 }
 }

 if(!ok) return foundat+needle->header_len;
 /*Keep running through the buffer until an non printable character is reached*/
 while(isprint(foundat[end]) || foundat[end]=='\x0a' || foundat[end]=='\x09')
 {
 end++;
 }
 foundat+=end-1;
 footer=foundat;

 if(end < 50) return foundat;

 /*Now lets go the other way and grab all those comments at the begining of the file*/
 while(isprint(buf[start]) || buf[start]=='\x0a' || buf[start]=='\x09')
 {
 start--;
 }

68

 header=&buf[start+1];
 file_size=(footer-header);

 foundat=header;

 /*Now we have an ascii file to look for keywords in*/
 foundat= bm_search(needle->footer,needle->footer_len,header, file_size,needle-
>footer_bm_table,FALSE,SEARCHTYPE_FORWARD);
 if(foundat) marker_score+=1;

 foundat=header;
 foundat= bm_search(needle->markerlist[0].value,needle->markerlist[0].len,header,
file_size,needle->markerlist[0].marker_bm_table,1,SEARCHTYPE_FORWARD);
 if(foundat) marker_score+=1;

 if(marker_score == 0) return foundat;

 if(foundat)
 {
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,header,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset+start+1);
 free(extractbuf);
 return footer;

 }
 return NULL;
}

/**
 *Function: extractHTM
 *Description: Given that we have a HTM header
 search for the file EOF and check that the bytes areound the header are ascii
*Return: A pointer to where the EOF of the HTM is in the current buffer
**/
char* extractHTM(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)
{
 char* buf=foundat;
 char* extractbuf = NULL;
 char* currentpos=NULL;

 int bytes_to_search=0;
 int i=0;
 int file_size=0;

 /*Jump past the <HTML tag*/
 foundat+=needle->header_len;

 /*Check the first 16 bytes to see if they are ASCII*/
 for(i=0;i<16;i++)
 {
 if(!isprint(foundat[i]) && foundat[i]!='\x0a' && foundat[i]!='\x09')
 {
 return foundat+16;
 }
 }

 /*Determine if the buffer is large enough to encompass a reasonable search*/
 if(buflen < needle->max_len)
 {
 bytes_to_search=buflen-(foundat-buf);
 }
 else
 {
 bytes_to_search=needle->max_len;
 }

 /*Store the current position and search for the HTML> tag*/

69

 currentpos=foundat;
 foundat= bm_search(needle->footer,needle-
>footer_len,foundat,bytes_to_search,needle->footer_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);
 if(foundat)//Found the footer, write to disk
 {
 file_size = (foundat-buf)+needle->footer_len;
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 foundat+=needle->footer_len;
 return foundat;

 }
 else
 {
 return NULL;
 }

}

/**
 *Function: validOLEheader
 *Description: run various tests aginst an OLE-HEADER to determine whether or not
 it is valid.
*Return: TRUE/FALSE
**/
int validOLEheader(struct OLE_HDR *h)
{

 if(htos((char*) &h->reserved,FOREMOST_LITTLE_ENDIAN) !=0 || htoi((char*) &h-
>reserved1,FOREMOST_LITTLE_ENDIAN)!=0 || htoi((char*) &h-
>reserved2,FOREMOST_LITTLE_ENDIAN)!=0)
 {
 return FALSE;
 }

 /*The minimum sector shift is usually 2^6(64) and the uSectorShift is 2^9(512))*/
 if(htos((char*) &h->uMiniSectorShift,FOREMOST_LITTLE_ENDIAN)!=6 || htos((char*) &h-
>uSectorShift,FOREMOST_LITTLE_ENDIAN)!=9 || htoi((char*) &h-
>dir_flag,FOREMOST_LITTLE_ENDIAN) < 0)
 {
 return FALSE;
 }
 /*Sanity Checking*/
 if(htoi((char*) &h->num_FAT_blocks,FOREMOST_LITTLE_ENDIAN) <= 0 || htoi((char*) &h-
>num_FAT_blocks,FOREMOST_LITTLE_ENDIAN) > 100)
 {
 return FALSE;
 }
 if(htoi((char*) &h->num_extra_FAT_blocks,FOREMOST_LITTLE_ENDIAN) < 0 || htoi((char*)
&h->num_extra_FAT_blocks,FOREMOST_LITTLE_ENDIAN) > 100)
 {
 return FALSE;
 }
 return TRUE;

}

/**
 *Function:checkOleName
 *Description: Determine what type of file is stored in the OLE format based on the
 names of DIRENT in the FAT table.
Return: A char consisting of the suffix of the appropriate file.
**/
char* checkOleName(char* name)
{
 if(strstr(name,"WordDocument"))
 {

70

 return "doc";
 }
 else if(strstr(name,"Worksheet") || strstr(name,"Book") || strstr(name,"Workbook"))
 {
 return "xls";
 }
 else if(strstr(name,"Power"))
 {
 return "ppt";
 }
 else if(strstr(name,"Access") || strstr(name,"AccessObjSiteData"))
 {
 return "mbd";
 }
 else if(strstr(name,"Visio"))
 {
 return "vis";
 }
 else if(strstr(name,"Sfx"))
 {
 return "sdw";
 }
 else
 {
 return NULL;
 }

 return NULL;

}

int adjustBS(int size,int bs)
{
 int rem=(size%bs);

 if(rem==0)
 {

 return size;
 }
#ifdef DEBUG
 printf("\tnew size:=%d\n",size+(bs-rem));
#endif
 return (size+(bs-rem));

}

/**
 *Function: extractOLE
 *Description: Given that we have a OLE header, jump through the OLE structure and
 determine what type of file it is.
*Return: A pointer to where the EOF of the OLE is in the current buffer
**/
char* extractOLE(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset,char* type)
{
 char* buf=foundat;
 char* extractbuf = NULL;
 char* temp=NULL;
 char* suffix="ole";
 int totalsize=0;
 int extrasize=0;
 int oldblk=0;
 int i, j;
 int size=0;
 int blknum=0;
 int validblk=512;
 int file_size=0;
 int num_extra_FAT_blocks=0;
 char* htoi_c=NULL;

71

 int extra_dir_blocks=0;
 int num_FAT_blocks=0;
 int next_FAT_block=0;
 char *p;
 int fib=1024;
 struct OLE_HDR *h = NULL;

 int result=0;
 int highblock=0;
 unsigned long miniSectorCutoff=0;
 unsigned long csectMiniFat=0;

 /*Deal with globals defined in the OLE API, ugly*/
 if(dirlist!=NULL) free(dirlist);
 if(FAT!=NULL) free (FAT);
 initOLE();

 if(buflen < validblk) validblk=buflen;
 h = (struct OLE_HDR*) foundat; /*cast the header block to point at foundat*/
#ifdef DEBUG
 dump_header(h);
#endif
 num_FAT_blocks=htoi((char*) &h->num_FAT_blocks,FOREMOST_LITTLE_ENDIAN);

 if(!validOLEheader(h)) return (buf+validblk);

 miniSectorCutoff=htoi((char*) &h->miniSectorCutoff,FOREMOST_LITTLE_ENDIAN);
 csectMiniFat=htoi((char*) &h->csectMiniFat,FOREMOST_LITTLE_ENDIAN);
 next_FAT_block=htoi((char*) &h->FAT_next_block,FOREMOST_LITTLE_ENDIAN);
 num_extra_FAT_blocks=htoi((char*) &h->num_extra_FAT_blocks,FOREMOST_LITTLE_ENDIAN);

 FAT = (int *) Malloc (OUR_BLK_SIZE * (num_FAT_blocks + 1));
 p = (char *) FAT;
 memcpy (p, &h[1], OUR_BLK_SIZE - FAT_START);
 if (next_FAT_block > 0)
 {
 p += (OUR_BLK_SIZE - FAT_START);
 blknum = next_FAT_block;
 for (i = 0; i < num_extra_FAT_blocks; i++)
 {
 if(!get_block (buf, blknum,p, buflen)) return buf+validblk;
 validblk=(blknum+1)*OUR_BLK_SIZE;
 p += OUR_BLK_SIZE - sizeof (int);
 blknum = htoi(p,FOREMOST_LITTLE_ENDIAN);
 }
 }

 blknum = htoi((char*) &h->root_start_block,FOREMOST_LITTLE_ENDIAN);
 highblock=htoi((char*) &h->dir_flag,FOREMOST_LITTLE_ENDIAN);
#ifdef DEBUG
 printf("getting dir block\n");
#endif
 //if(!get_dir_block (buf, blknum, buflen)) return buf+validblk;

 if(!get_block (buf, blknum,buffer, buflen))return buf+validblk;/*GET DIR BLOCK*/
#ifdef DEBUG
 printf("done getting dir block\n");
#endif
 validblk=(blknum+1)*OUR_BLK_SIZE;
 while (blknum != END_OF_CHAIN)
 {
#ifdef DEBUG
 printf("finding dir info extra_dir_blks:=%d\n",extra_dir_blocks);
#endif
 if(extra_dir_blocks > 300) return buf+validblk;

/**PROBLEMA**/
#ifdef DEBUG
 printf("***blknum:=%d FATblk:=%d\n",blknum,FATblk);
#endif

72

 oldblk=blknum;
 htoi_c=(char *) &FAT[blknum / (OUR_BLK_SIZE / sizeof (int))];

 FATblk = htoi(htoi_c,FOREMOST_LITTLE_ENDIAN);
#ifdef DEBUG
 printf("***blknum:=%d FATblk:=%d\n",blknum,FATblk);
#endif

 if(!get_FAT_block (buf, blknum, block_list,buflen)) return buf+validblk;
 blknum = htoi((char *) &block_list[blknum % 128],FOREMOST_LITTLE_ENDIAN);
#ifdef DEBUG
 printf("**blknum:=%d FATblk:=%d\n",blknum,FATblk);
#endif
 if (blknum == END_OF_CHAIN || oldblk==blknum)
 {
#ifdef DEBUG
 printf("EOC\n");
#endif
 break;
 }
 extra_dir_blocks++;
 result=get_dir_block (buf, blknum,buflen);
 if (result==SHORT_BLOCK)
 {
#ifdef DEBUG
 printf("SHORT BLK\n");
#endif
 break;
 }
 else if(!result) return buf+validblk;

 }
#ifdef DEBUG
 printf("DONE WITH WHILE\n");
#endif
 blknum = htoi((char*) &h->root_start_block,FOREMOST_LITTLE_ENDIAN);
 size = OUR_BLK_SIZE * (extra_dir_blocks + 1);
 dirlist = (struct DIRECTORY *) Malloc (size);
 memset (dirlist, 0, size);

 if(!get_block (buf, blknum,buffer, buflen))return buf+validblk;/*GET DIR BLOCK*/

 if(!get_dir_info (buffer))
 {
 return foundat+validblk;
 }

 for (i = 0; i < extra_dir_blocks; i++)
 {
 if(!get_FAT_block (buf, blknum, block_list,buflen)) return buf+validblk;
 blknum = htoi((char *) &block_list[blknum % 128],FOREMOST_LITTLE_ENDIAN);
 if (blknum == END_OF_CHAIN)
 break;
#ifdef DEBUG
 printf("getting dir blk blknum=%d\n",blknum);
#endif
 if(!get_block (buf, blknum,buffer, buflen))return buf+validblk;/*GET DIR BLOCK*/
 if(!get_dir_info (buffer))
 {
 return buf+validblk;
 }
 }
#ifdef DEBUG
 printf("dir count is %d\n",i);
#endif
 for (dl = dirlist, i = 0; i < dir_count; i++, dl++)
 {
 memset (buffer, ' ', 75);
 j = htoi((char*) &dl->level,FOREMOST_LITTLE_ENDIAN)*4;
 sprintf (&buffer[j], "%-s", dl->name);
 j = strlen (buffer);

73

 if(dl->name[0]=='@') return foundat+validblk;
 if (dl->type == STREAM)
 {
 buffer[j] = ' ';
 sprintf (&buffer[60], "%8d\n", dl->size);

 if(temp==NULL) /*check if we have alread defined the type*/
 {
 temp=checkOleName(dl->name);
 if(temp) suffix=temp;
 }
 if(dl->size > miniSectorCutoff)
 {
 totalsize+=adjustBS(dl->size,512);
 }
 else
 {
 totalsize+=adjustBS(dl->size,64);
 }

#ifdef DEBUG
 fprintf (stdout, buffer);
#endif
 }
 else
 {
 sprintf (&buffer[j], "\n");
#ifdef DEBUG
 printf("\tnot stream data \n");
 fprintf (stdout, buffer);
#endif

 extrasize+=adjustBS(dl->size,512);

 }
 }

 totalsize+=fib;
#ifdef DEBUG
printf("DIR SIZE:=%d, numFATblks:=%d
MiniFat:=%d\n",adjustBS(((dir_count)*128),512),(num_FAT_blocks*512),adjustBS((64*csectMin
iFat),512));
#endif
 totalsize+=adjustBS(((dir_count)*128),512);
 totalsize+=(num_FAT_blocks*512);
 totalsize+= adjustBS((64*csectMiniFat),512);
 if((highblk+5) > highblock && highblk > 0)
 {
 highblock=highblk+5;
 }
 highblock=highblock*512;

#ifdef DEBUG
 printf("\t highblock:=%d\n",highblock);
#endif
 if(highblock > totalsize)
 {
#ifdef DEBUG
 printf(" Total size:=%d a difference of %lld\n",totalsize,buflen-totalsize);
 printf(" Extra size:=%d \n",extrasize);
 printf(" Highblock is greater than totalsize\n");
#endif
 totalsize=highblock;
 }

 totalsize=adjustBS(totalsize,512);
#ifdef DEBUG
 printf(" Total size:=%d a difference of %lld\n",totalsize,buflen-totalsize);
 printf(" Extra size:=%d \n",extrasize);

74

#endif

 if(buflen < totalsize)
 {
#ifdef DEBUG
 printf(" ***Error not enough left in the buffer left:=%lld
needed=%d***\n",buflen, totalsize);
#endif
 totalsize=buflen;
 }

 foundat=buf;
 highblock-=5*512;
 if(highblock > 0 && highblock < buflen)
 {
 foundat+=highblock;
 }
 else
 {
 foundat+=totalsize;
 }
 /*Return to the highest blknum read in the file, that way we don't miss files that
are close*/

 file_size = totalsize;
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 if(suffix) needle->suffix=suffix;

 if(!strstr(needle->suffix,type) && type!="all")
 {
 return foundat;
 }
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);

 free(extractbuf);
 return foundat;

}

//**/
int checkMov(char* atom)
{
#ifdef DEBUG
 printf("Atom:= %c%c%c%c\n",atom[0],atom[1],atom[2],atom[3]);
#endif
 if(strncmp(atom,"free",4)==0 || strncmp(atom,"mdat",4)==0 ||
strncmp(atom,"free",4)==0 || strncmp(atom,"wide",4)==0 || strncmp(atom,"PICT",4)==0)
 {
 return TRUE;
 }
 if(strncmp(atom,"trak",4)==0 || strncmp(atom,"mdat",4)==0 ||
strncmp(atom,"mp3",3)==0 || strncmp(atom,"wide",4)==0 || strncmp(atom,"moov",4)==0)
 {
 return TRUE;
 }

 return FALSE;
}
/**
 *Function: extractMOV
 *Description: Given that we have a MOV header JUMP through the mov data structures
 until we reach EOF
*Return: A pointer to where the EOF of the MOV is in the current buffer
**/
char* extractMOV(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)

75

{
 char* buf=foundat-4;
 char* extractbuf = NULL;
 unsigned int atomsize=0;
 unsigned int filesize=0;
 int mdat=FALSE;
 foundat-=4;
 buflen+=4;
// printf("mooooov\n");
 while(1) /*Loop through all the atoms until the EOF is reached*/
 {
 atomsize=htoi(foundat,FOREMOST_BIG_ENDIAN);
#ifdef DEBUG
 printf("Atomsize:=%d\n",atomsize);
#endif
 if(atomsize <= 0 || atomsize > needle->max_len)
 {
 return foundat+needle->header_len+4;
 }
 filesize+=atomsize; /*Add the atomsize to the total file size*/
 //printf("mark2\n");
 if(filesize > buflen)
 {
 #ifdef DEBUG
 printf("file size > buflen fs:=%d bf:=%lld\n",filesize, buflen);
 #endif
 if(buflen >= needle->max_len) return foundat+needle->header_len+4;
 else
 {
 //printf("buflen:=%lld max:=%lld",buflen,needle->max_len);
 return NULL;
 }
 }
 //printf("mark4\n");
 foundat+=atomsize;
 if(buflen-(foundat-buf) < 5)
 {
 if(mdat)
 {
 break;
 }
 else
 {
#ifdef DEBUG
 printf("No mdat found");
#endif
 return foundat;
 }
 }
 /*Check if we have an mdat atom, these are required thus can be used to
 * Weed out corrupted file*/
 if(strncmp(foundat+4,"mdat",4)==0)
 {
 mdat=TRUE;
 }

 if(checkMov(foundat+4)) /*Check to see if we are at a valid header*/
 {
#ifdef DEBUG
 printf("Checkmov succeeded\n");
#endif
 }
 else
 {
#ifdef DEBUG
 printf("Checkmov failed\n");
#endif
 if(mdat)
 {
 break;
 }

76

 else
 {
#ifdef DEBUG
 printf("No mdat found");
#endif
 return foundat;

 }
 }
 } //End loop
 if(foundat)
 {

 filesize = (foundat-buf);
#ifdef DEBUG
 printf("file size:=%d\n",filesize);
#endif
 extractbuf=(unsigned char*) malloc(filesize*sizeof(char));
 memcpy(extractbuf,buf,filesize);
 writeToDisk(s,needle,filesize,extractbuf,c_offset+f_offset);
 free(extractbuf);

 return foundat;
 }
#ifdef DEBUG
 printf("NULL Atomsize:=%d\n",atomsize);
#endif
 return NULL;

}

/**
 *Function: extractWMV
 *Description: Given that we have a WMV header
 search for the file header and grab the file size.
*Return: A pointer to where the EOF of the WMV is in the current buffer
**/

char* extractWMV(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)
{

 char* currentpos=NULL;
 char* header=foundat;
 char* extractbuf = NULL;
 char* buf=foundat;
 unsigned long long int size=0;
 unsigned long long file_size=0;
 int headerSize=0;
 int fileObjHeaderSize=0;
 int numberofHeaderObjects=0;
 int reserved[2];
 int bytes_to_search=0;

 /*If we have less than a WMV header bail out*/
 if(buflen < 70) return NULL;

 foundat+=16;/*Jump to the header size*/
 headerSize=htoll(foundat,FOREMOST_LITTLE_ENDIAN);
 foundat+=8;
 numberofHeaderObjects=htoi(foundat,FOREMOST_LITTLE_ENDIAN);
 foundat+=4; //Jump to the begin File properties obj
 reserved[0]=foundat[0];
 reserved[1]=foundat[1];
 foundat+=2;

//end header obj
//**/

77

 //Sanity Check
 if(headerSize <= 0 || numberofHeaderObjects <= 0 || reserved[0] != 1)
 {
 return foundat;
 }

 currentpos=foundat;
 if(buflen-(foundat-buf) >= needle->max_len) bytes_to_search=needle->max_len;
 else bytes_to_search=buflen-(foundat-buf);

/*Note we are not searching for the footer here, just the file header ID so we can get
the file size*/
 foundat= bm_search(needle->footer,needle->footer_len,foundat,bytes_to_search,needle-
>footer_bm_table,needle->case_sen,SEARCHTYPE_FORWARD);
 if(foundat)
 {
 foundat+=16;/*jump to the headersize*/
 fileObjHeaderSize=htoll(foundat,LITTLE_ENDIAN);
 foundat+=24; //Jump to the file size obj
 size=htoi(foundat,LITTLE_ENDIAN);
#ifdef DEBUG
 printf("SIZE:=%lld\n",size);
#endif
 }
 else
 {
 return NULL;
 }

/*Sanity check data*/
 if(size > 0 && size <= needle->max_len && size <= buflen)
 {
 header+=size;
#ifdef DEBUG
 printf(" Found a WMV at:=%lld,File size:=%lld\n",c_offset,size);
 printf(" Headersize:=%d, numberofHeaderObjects:= %d
,reserved:=%d,%d\n",headerSize,numberofHeaderObjects,reserved[0],reserved[1]);
#endif
 /*Everything seem ok, write to disk*/
 file_size = (header-buf);
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 foundat+=file_size;
 return header;
 }

 return NULL;

}

/**
 *Function: extractRIFF
 *Description: Given that we have a RIFF header parse header and grab the file size.
 *Return: A pointer to where the EOF of the RIFF is in the current buffer
 **/
char* extractRIFF(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset,char* type)
{
 unsigned char* buf=foundat;

 char* extractbuf =NULL;
 int size=0;
 unsigned long long file_size=0;

 size=htoi(&foundat[4],FOREMOST_LITTLE_ENDIAN); /* Grab the total file size in
little endian from offset 4*/
 if(strncmp(&foundat[8],"AVI",3)==0) /*Sanity Check*/
 {
 if(strncmp(&foundat[12],"LIST",4)==0) /*Sanity Check*/

78

 {
 if(size > 0 && size <= needle->max_len && size <= buflen)
 {
#ifdef DEBUG
 printf("\n Found an AVI at:=%lld,File size:=%d\n",c_offset,size);
#endif
 file_size = size;
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 needle->suffix="avi";
 if(!strstr(needle->suffix,type) && type!="all") return foundat+size;
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 foundat+=size;
 return foundat;
 }
 return buf+needle->header_len;

 }
 else
 {
 return buf+needle->header_len;
 }
 }
 else if(strncmp(&foundat[8],"WAVE",4)==0) /*Sanity Check*/
 {
 if(size > 0 && size <= needle->max_len && size <= buflen)
 {
#ifdef DEBUG
 printf("\n Found a WAVE at:=%lld,File size:=%d\n",c_offset,size);
#endif

 file_size = size;
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 needle->suffix="wav";
 if(!strstr(needle->suffix,type) && type!="all") return foundat+size;

 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 foundat+=file_size;
 return foundat;
 }
 return buf+needle->header_len;

 }
 else
 {
 return buf+needle->header_len;
 }
 return NULL;

}

/**
 *Function: extractBMP
 *Description: Given that we have a BMP header parse header and grab the file size.
 *Return: A pointer to where the EOF of the BMP is in the current buffer
 **/
char* extractBMP(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)
{
 char* buf=foundat;
 int size=0;
 int headerlength=0;
 int verticalsize=0;
 char* extractbuf=NULL;
 unsigned long long file_size=0;

 foundat+=2; /*JUMP the first to bytes of the header
(BM)*/

79

 size=htoi(foundat,LITTLE_ENDIAN); /*Grab the total file size in
little_endian*/

 /*Sanity Check*/
 if(size <= 0 || size > needle->max_len) return foundat;

 if(buflen-(foundat-buf) < 20)
 {
 return foundat;
 }
 foundat+=16;
 headerlength=htoi(foundat,FOREMOST_LITTLE_ENDIAN);

//Header length
 if(headerlength > 1000 || headerlength <= 0) return foundat;

 foundat+=4;
 verticalsize=htoi(foundat,FOREMOST_LITTLE_ENDIAN);

//Vertical length
 if(verticalsize <=0 || verticalsize > 2000) return foundat;

 foundat-=22;
#ifdef DEBUG
 printf("\n The size of the BMP is %d, Header length:=%d , Vertical Size:=
%d\n",size,headerlength,verticalsize);
#endif
 if(size <= buflen)
 {
 file_size = size;
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 free(extractbuf);
 foundat+=file_size;
 return foundat;

 }
 return NULL;
}

/**
 *Function: extractGIF
 *Description: Given that we have a GIF header parse the given buffer to determine
 * where the file ends.
 *Return: A pointer to where the EOF of the GIF is in the current buffer
 **/

char* extractGIF(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec* needle,unsigned long long f_offset)
{
 char* buf=foundat;
 char* currentpos=foundat;
 char* extractbuf = NULL;
 int bytes_to_search=0;
 unsigned long long file_size=0;
//printf("needle->header_len:=%d needle->footer_len:=%d\n",needle->header_len,needle-
>footer_len);

 foundat+=4; /*Jump the first 4 bytes of the gif
header (GIF8)*/

 /*Check if the GIF is type 89a or 87a*/
 if(strncmp(foundat,"9a",2)==0 || strncmp(foundat,"7a",2)==0)
 {
 foundat+=2; /*Jump the length of the header*/

 currentpos=foundat;
 if(buflen-(foundat-buf) >= needle->max_len) bytes_to_search=needle->max_len;

80

 else bytes_to_search=buflen-(foundat-buf);
 //printf("bytes_to_search:=%d needle->footer_len:=%d needle-
>header_len:=%d\n",bytes_to_search,needle->footer_len,needle->header_len);
 foundat= bm_search(needle->footer,needle-
>footer_len,foundat,bytes_to_search,needle->footer_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);
 if(foundat)
 {
 /*We found the EOF, write the file to disk and return*/
#ifdef DEBUG
 printx(foundat,0,16);
#endif
 file_size = (foundat-buf)+needle->footer_len;
#ifdef DEBUG
 printf("The GIF file size is %llu
c_offset:=%llu\n",file_size,c_offset);
#endif
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 foundat+=needle->footer_len;
 free(extractbuf);
 return foundat;
 }
 return NULL;

 }
 else /*Invalid GIF header return the current
pointer*/
 {
 return foundat;
 }

}

/**
 *Function: extractMPG
 * Not done yet
 **/

char* extractMPG(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec * needle,unsigned long long f_offset)
{
 char* buf=foundat;
 char* currentpos=NULL;

 unsigned char* extractbuf = NULL;
 //signed short headersize=0;
 int bytes_to_search=0;
 unsigned short size=0;
 unsigned long long file_size=0;
 /*
 size=htos(&foundat[4],FOREMOST_BIG_ENDIAN);
 printf("size:=%d\n",size);

 printx(foundat,0,16);
 foundat+=4;
 */

 int j=0;
 if(foundat[15]=='\xBB')
 {

 }
 else
 {

 return buf+needle->header_len;
 }

 if(buflen <=2*KILOBYTE)

81

 {
 bytes_to_search=buflen;
 }
 else
 {
 bytes_to_search=2*KILOBYTE;
 }
 while(1)
 {
 j=0;
 currentpos=foundat;
#ifdef DEBUG
 printf("Searching for marker\n");
#endif
 foundat= bm_search(needle->markerlist[0].value,needle-
>markerlist[0].len,foundat,bytes_to_search,needle->markerlist[0].marker_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);

 if(foundat)
 {
#ifdef DEBUG
 printf("Found after searching %d\n",foundat-currentpos);
#endif
 while(1)
 {

 if(foundat[3] >= '\xBB' && foundat[3] <='\xEF')
 {
#ifdef DEBUG
 printf("jumping %d:\n",j);
#endif
 size=htos(&foundat[4],FOREMOST_BIG_ENDIAN);
#ifdef DEBUG
 printf("\t hit: ");
 printx(foundat,0,16);
 printf("size:=%d\n\tjump: ",size);
#endif
 file_size+=(foundat-buf)+size;
 if(size <= 0 || size > buflen-(foundat-buf))
 {
#ifdef DEBUG
 printf("Not enough room in the buffer ");
#endif
 if(size <= 50*KILOBYTE && size > 0)
 {
 /*We should probably search
more*/
 if(file_size < needle->max_len)
 {
 return NULL;
 }
 else
 {
 break;
 }
 }
 else
 {
 return currentpos+needle-
>header_len;
 }
 }
 foundat+=size+6;
#ifdef DEBUG
 printx(foundat,0,16);
#endif
 j++;
 }
 else
 {

82

 break;
 }
 }
 if(foundat[3]=='\xB9')
 {
 break;
 }
 else if(foundat[3]!='\xBA' && foundat[3]!='\x00')
 {
 /*This is the error state where this doesn't seem to be an
mpg anymore*/

 size=htos(&foundat[4],FOREMOST_BIG_ENDIAN);
#ifdef DEBUG
 printf("\t ***TEST: %x\n",foundat[3]);
 printx(foundat,0,16);

 printf("size:=%d\n",size);
#endif
 if((currentpos - buf) >= 1*MEGABYTE)
 {
 foundat=currentpos;
 break;
 }
 return currentpos+needle->header_len;

 }
 else if(foundat[3]=='\xB3')
 {
 //exit(-1);
 foundat+=3;
 }
 else
 {
 foundat+=3;
 }
 }
 else
 {
 if((currentpos - buf) >= 1*MEGABYTE)
 {
 foundat=currentpos;
 break;
 }
 else
 {
#ifdef DEBUG
 printf("RETURNING BUF\n");
#endif
 return buf+needle->header_len;
 }
 }
 }

 if(foundat)
 {
 file_size = (foundat-buf)+needle->footer_len;
 if(file_size < 1*KILOBYTE) return buf+needle->header_len;
 }
 else
 {
 return buf+needle->header_len;
 // file_size= needle->max_len;
 }
 if(file_size > buflen) file_size=buflen;
 foundat=buf;
 #ifdef DEBUG
 printf("The file size is %llu c_offset:=%llu\n",file_size,c_offset);
 #endif
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));

83

 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 foundat+=file_size;
 free(extractbuf);
 return foundat;
}

/**
 *Function: extractJPEG
 *Description: Given that we have a JPEG header parse the given buffer to determine
 * where the file ends.
 *Return: A pointer to where the EOF of the JPEG is in the current buffer
 **/

char* extractJPEG(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec * needle,unsigned long long f_offset)
{
 char* buf=foundat;
 char* currentpos=NULL;

 unsigned char* extractbuf = NULL;
 signed short headersize=0;
 int bytes_to_search=0;
 int hasTable=FALSE;
 int hasHuffman=FALSE;
 unsigned long long file_size=0;

 /*Check if we have a valid header*/
 if(buflen < 128)
 {
 printf("low buffer %lld\n",buflen);
 return NULL;
 }
 if(foundat[3]=='\xe0');//JFIF header
 else if(foundat[3]=='\xe1');//EXIF header
 else return foundat+needle->header_len;//Invalid keep searching

 while(1) /* Jump through the headers until we reach the "data" part of the file*/
 {
#ifdef DEBUG
 printx(foundat,0,16);
#endif
 foundat+=2;
 headersize=htos(&foundat[2],FOREMOST_BIG_ENDIAN);
#ifdef DEBUG
 printf("Headersize:=%d buflen:=%lld\n",headersize,buflen);
#endif
 if(headersize < 0)
 {
#ifdef DEBUG
 printf("Negative header size\n");
#endif
 return buf+needle->header_len;;
 }

 if(headersize > buflen)
 {
 return NULL;
 }
 foundat+=headersize;

 if(foundat[2]!='\xff')
 {
 break;
 }
 /*Ignore 2 "0xff" side by side*/
 if(foundat[2]=='\xff' && foundat[3]=='\xff')
 {
 foundat++;

84

 }
 if(foundat[3]=='\xdb' || foundat[4]=='\xdb')
 {
 hasTable=TRUE;
 }
 else if(foundat[3]=='\xc4')
 {
 hasHuffman=TRUE;
 }
 }

 /*All jpegs must contact a Huffman marker as well as a quantization table*/
 if(!hasTable || !hasHuffman)
 {
#ifdef DEBUG
printf("No Table or Huffman \n");
#endif
 return buf+needle->header_len;
 }

 currentpos=foundat;
 //sprintf("Searching for footer\n");
 if(buflen-(foundat-buf) >= needle->max_len) bytes_to_search=needle->max_len;
 else bytes_to_search=buflen-(foundat-buf);

 foundat= bm_search(needle->footer,needle->footer_len,foundat,bytes_to_search,needle-
>footer_bm_table,needle->case_sen,SEARCHTYPE_FORWARD);

 if(foundat) /*Found found a valid JPEG*/
 {
 /*We found the EOF, write the file to disk and return*/
 file_size = (foundat-buf)+needle->footer_len;
#ifdef DEBUG
 printf("The jpeg file size is %llu c_offset:=%llu\n",file_size,c_offset);
#endif
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 foundat+=needle->footer_len;
 free(extractbuf);
 return foundat;
 }
 else
 {
 return NULL;
 }

} //End ExtractJPEG

/**
 *Function: extractGENERIC
 *Description:
 *Return: A pointer to where the EOF of the
 **/

char* extractGENERIC(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec * needle,unsigned long long f_offset)
{
 char* buf=foundat;
 unsigned char* extractbuf = NULL;
 int bytes_to_search=0;
 unsigned long long file_size=0;

 if(buflen-(foundat-buf) >= needle->max_len) bytes_to_search=needle->max_len;
 else bytes_to_search=buflen-(foundat-buf);

 if(needle->footer==NULL)
 {
 foundat=NULL;
 }

85

 else
 {
 foundat= bm_search(needle->footer,needle-
>footer_len,foundat,bytes_to_search,needle->footer_bm_table,needle-
>case_sen,SEARCHTYPE_FORWARD);
 }

 if(foundat)
 {
 file_size = (foundat-buf)+needle->footer_len;
 }
 else
 {
 file_size= needle->max_len;
 }
 if(file_size > buflen) file_size=buflen;
 foundat=buf;
 #ifdef DEBUG
 printf("The file size is %llu c_offset:=%llu\n",file_size,c_offset);
 #endif
 extractbuf=(unsigned char*) malloc(file_size*sizeof(char));
 memcpy(extractbuf,buf,file_size);
 writeToDisk(s,needle,file_size,extractbuf,c_offset+f_offset);
 foundat+=file_size;
 free(extractbuf);
 return foundat;
}

char* extractFile(f_state *s, unsigned long long c_offset,char *foundat,
unsigned long long buflen, s_spec * needle,unsigned long long f_offset)
{
 if(needle->type==JPEG)
 {
 return extractJPEG(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==GIF)
 {
 return extractGIF(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==BMP)
 {
 return extractBMP(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==RIFF)
 {
 needle->suffix="riff";
 return extractRIFF(s,c_offset,foundat, buflen, needle,f_offset,"all");
 }
 else if(needle->type==AVI)
 {
 return extractRIFF(s,c_offset,foundat, buflen, needle,f_offset,"avi");
 }
 else if(needle->type==WAV)
 {
 return extractRIFF(s,c_offset,foundat, buflen, needle,f_offset,"wav");
 needle->suffix="rif";
 }
 else if(needle->type==WMV)
 {
 return extractWMV(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==OLE)
 {
 needle->suffix="ole";
 return extractOLE(s,c_offset,foundat, buflen, needle,f_offset,"all");
 }
 else if(needle->type==DOC)
 {
 return extractOLE(s,c_offset,foundat, buflen, needle,f_offset,"doc");
 }
 else if(needle->type==PPT)

86

 {
 return extractOLE(s,c_offset,foundat, buflen, needle,f_offset,"ppt");
 }
 else if(needle->type==XLS)
 {
 return extractOLE(s,c_offset,foundat, buflen, needle,f_offset,"xls");
 needle->suffix="ole";
 }
 else if(needle->type==PDF)
 {
 return extractPDF(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==CPP)
 {
 return extractCPP(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==HTM)
 {
 return extractHTM(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==MPG)
 {
 return extractMPG(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==ZIP)
 {
 return extractZIP(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==MOV || needle->type==VJPEG)
 {
 return extractMOV(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else if(needle->type==CONF)
 {
 return extractGENERIC(s,c_offset,foundat, buflen, needle,f_offset);
 }
 else
 {
 return NULL;
 }
}

B. EXTRACT.H
/*
 local file header signature 4 bytes (0x04034b50)
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 filename length 2 bytes
 extra field length 2 bytes
*/
/*
 central file header signature 4 bytes (0x02014b50)
 version made by 2 bytes
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 filename length 2 bytes
 extra field length 2 bytes
 file comment length 2 bytes

87

 disk number start 2 bytes
 internal file attributes 2 bytes
 external file attributes 4 bytes
 relative offset of local header 4 bytes
*/
/* end of central dir signature 4 bytes (0x06054b50)
 number of this disk 2 bytes
 number of the disk with the
 start of the central directory 2 bytes
 total number of entries in
 the central dir on this disk 2 bytes
 total number of entries in
 the central dir 2 bytes
 size of the central directory 4 bytes
 offset of start of central
 directory with respect to
 the starting disk number 4 bytes
 zipfile comment length 2 bytes
 zipfile comment (variable size)
 */
struct zipLocalFileHeader {
 unsigned int signature; //0
 unsigned short version; //4
 unsigned short genFlag; //6
 signed short compression;//8
 unsigned short last_mod_time;//10
 unsigned short last_mod_date;//12
 unsigned int crc;//14
 unsigned int compressed;//18
 unsigned int uncompressed;//22
 unsigned short filename_length;//26
 unsigned short extra_length;//28
 };
 struct zipCentralFileHeader {
 unsigned int signature;//0
 unsigned char version_extract[2];//4
 unsigned char version_madeby[2];//6
 unsigned short genFlag;//8
 unsigned short compression;//10
 unsigned short last_mod_time;//12
 unsigned short last_mod_date;//14
 unsigned int crc;//16
 unsigned int compressed;//20
 unsigned int uncompressed;//24
 unsigned short filename_length;//28
 unsigned short extra_length;//30
 unsigned short filecomment_length;//32
 unsigned short disk_number_start;//34
 };
 struct zipEndCentralFileHeader {
 unsigned int signature;//0
 unsigned short numOfdisk;//4
 unsigned short compression;//6
 unsigned short start_of_central_dir;//8
 unsigned short num_entries_in_central_dir;//10
 unsigned int size_of_central_dir;//12
 unsigned int offset;//16
 unsigned short comment_length;//20
 };

void printZip(struct zipLocalFileHeader* fileHeader , struct zipCentralFileHeader*
centralHeader)
{
 printf("\n Local Header Data\n");
 printf("GenFlag:=%d,compressed:=%d,uncompressed:=%d\n",fileHeader-
>genFlag,fileHeader->compressed,fileHeader->uncompressed);
 printf("Compression:=%d, filename_len:=%d,extralen:=%d\n",fileHeader-
>compression,fileHeader->filename_length,fileHeader->extra_length);

 printf(" Central Header Data\n");

88

 printf("GenFlag:=%d,compressed:=%d,uncompressed:=%d\n",centralHeader-
>genFlag,centralHeader->compressed,centralHeader->uncompressed);
 printf("Compression:=%d, Version Madeby:=%x%x\n",centralHeader-
>compression,centralHeader->version_madeby[0],centralHeader->version_madeby[1]);
}

??????spacing???

C. API.C
/*
 Modified API from http://chicago.sourceforge.net/devel/docs/ole/
 Basically the same API, added error checking and the ability
 to check buffers for docs except just files.
*/
#include "main.h"
#include "ole.h"

char buffer[OUR_BLK_SIZE];
char *extract_name;
int extract = 0;
int dir_count = 0;
int *FAT;
int verbose = TRUE;
int FATblk;
int currFATblk;
int highblk=0;
int block_list[OUR_BLK_SIZE / sizeof (int)];
extern int errno;

void initOLE()
{
 int i=0;
 extract=0;
 dir_count=0;
 FAT=NULL;
 highblk=0;
 FATblk=0;
 currFATblk=-1;
 dirlist=NULL;
 dl=NULL;
 for(i=0;i<OUR_BLK_SIZE / sizeof (int);i++)
 {
 block_list[i]=0;
 }
 for(i=0;i<OUR_BLK_SIZE;i++)
 {
 buffer[i]=0;
 }
}

void *
Malloc (size_t bytes)
{
 void *x;

 x = malloc (bytes);
 if (x)
 return x;
 die ("Can't malloc %d bytes.\n", (char *) bytes);
 return 0;
}

89

int
Read (int fd, char *buf, int size)
{
 if (read (fd, buf, size) != size)
 {
 fprintf (stderr, "Bad read of %d bytes\n", size);
 exit (1);
 }
 return size;
}

int
Write (int fd, char *buf, int size)
{
 if (write (fd, buf, size) != size)
 {
 fprintf (stderr, "Bad write of %d bytes\n", size);
 exit (1);
 }
 return size;
}

void
die (char *fmt, void *arg)
{
 fprintf (stderr, fmt, arg);
 exit (1);
}

int
get_dir_block (char* fd, int blknum,int buffersize)
{
 int i;
 struct OLE_DIR *dir;
 char* dest=NULL;

 dest=get_ole_block (fd, blknum,buffersize);
 if(dest==NULL)
 {
 return FALSE;
 }
 for (i = 0; i < DIRS_PER_BLK; i++)
 {
 dir = (struct OLE_DIR *) &dest[sizeof (struct OLE_DIR) * i];
 if (dir->type == NO_ENTRY)
 break;
 }
 if(i==DIRS_PER_BLK)
 {
 return TRUE;
 }
 else
 {
 return SHORT_BLOCK;
 }
}

int
get_dir_info (char *src)
{
 int i, j;
 char *p, *q;
 struct OLE_DIR *dir;
 int punctCount=0;
 short name_size=0;

90

 for (i = 0; i < DIRS_PER_BLK; i++)
 {
 dir = (struct OLE_DIR *) &src[sizeof (struct OLE_DIR) * i];
 punctCount=0;

 //if(dir->reserved!=0) return FALSE;
 if(dir->type < 0) //Should we check if values are > 5
?????
 {
#ifdef DEBUG
 printf("\n Invalid directory type\n");
 printf("type:=%c size:=%lu \n", dir->type,dir->size);
#endif
 return FALSE;
 }

 if (dir->type == NO_ENTRY)
 break;

#ifdef DEBUG
//dump_dirent (i);
#endif
 dl = &dirlist[dir_count++];
 if(dl==NULL)
 {
#ifdef DEBUG
 printf("dl==NULL!!! bailing out\n");
#endif
 return FALSE;
 }

 if(dir_count > 500) return FALSE; /*SANITY CHECKING*/
 q = dl->name;
 p = dir->name;

 name_size=htos((char*) &dir->namsiz,FOREMOST_LITTLE_ENDIAN);

#ifdef DEBUG
 printf(" dir->namsiz:=%d\n",name_size);
#endif
 if(name_size > 64|| name_size <= 0) return FALSE;

 if (*p < ' ')
 p += 2; /* skip leading short */
 for (j = 0; j < name_size; j++, p++)
 {

 if(p==NULL || q==NULL) return FALSE;
 if (*p && isprint(*p))
 {

 if(ispunct(*p)) punctCount++;
 *q++ = *p;

 }
 }

 if(punctCount > 3)
 {
#ifdef DEBUG
printf("dl->name:=%s\n",dl->name);
 printf("pcount > 3!!! bailing out\n");
#endif
 return FALSE;
 }

 if(dl->name==NULL)
 {
#ifdef DEBUG
 printf(" ***NULL dir name. bailing out \n");

91

#endif
 return FALSE;
 }

 /*Ignore Catalogs*/
 if(strstr(dl->name,"Catalog")) return FALSE;
 *q = 0;
 dl->type = dir->type;
 dl->size = htoi((char*)&dir->size,FOREMOST_LITTLE_ENDIAN);

 dl->start_block = htoi((char*)&dir->start_block,FOREMOST_LITTLE_ENDIAN);
 dl->next = htoi((char*)&dir->next_dirent,FOREMOST_LITTLE_ENDIAN);
 dl->prev = htoi((char*)&dir->prev_dirent,FOREMOST_LITTLE_ENDIAN);
 dl->dir = htoi((char*)&dir->dir_dirent,FOREMOST_LITTLE_ENDIAN);
 if (dir->type != STREAM)
 {
 dl->s1 = dir->secs1;
 dl->s2 = dir->secs2;
 dl->d1 = dir->days1;
 dl->d2 = dir->days2;
 }
 }
 return TRUE;
}

static int *lnlv; /* last next link visited ! */
int
reorder_dirlist (struct DIRECTORY *dir, int level)
{
//printf(" Reordering the dirlist\n");
 dir->level = level;
 if (dir->dir != -1 || dir->dir > dir_count)
 {
 return 0;
 }
 else if (!reorder_dirlist (&dirlist[dir->dir], level + 1))
 return 0;
/* reorder next-link subtree, saving the most next link visited */
 if (dir->next != -1)
 {
 if (dir->next > dir_count)
 return 0;
 else if (!reorder_dirlist (&dirlist[dir->next], level))
 return 0;
 }
 else
 lnlv = &dir->next;
/* move the prev child to the next link and reorder it, if any exist
 */
 if (dir->prev != -1)
 {
 if (dir->prev > dir_count)
 return 0;
 else
 {
 *lnlv = dir->prev;
 dir->prev = -1;
 if (!reorder_dirlist (&dirlist[*lnlv], level))
 return 0;
 }
 }
 return 1;
}

int get_block (char* fd, int blknum, char *dest,long long int buffersize)

92

{
 char* temp=fd;
 int i=0;
 unsigned long long jump=(unsigned long long) OUR_BLK_SIZE*(unsigned long
long)(blknum + 1);
 if(blknum < -1 || jump < 0 || blknum > buffersize || buffersize < jump)
 {
#ifdef DEBUG
 printf(" Bad blk read1 blknum:=%d jump:=%lld
buffersize=%lld\n",blknum,jump,buffersize);
#endif
 return FALSE;
 }
 temp=fd+jump;
#ifdef DEBUG
printf(" Jumping to %lld blknum=%d buffersize=%lld\n",jump,blknum,buffersize);
#endif
 for(i=0;i < OUR_BLK_SIZE;i++)
 {
 dest[i]=temp[i];
 }
 if((blknum+1) > highblk) highblk=blknum+1;
 return TRUE;
}

char* get_ole_block (char* fd, int blknum,unsigned long long buffersize)
{
 unsigned long long jump=(unsigned long long) OUR_BLK_SIZE*(unsigned long
long)(blknum + 1);
 if(blknum < -1 || jump < 0 || blknum > buffersize || buffersize < jump)
 {
#ifdef DEBUG
 printf(" Bad blk read1 blknum:=%d jump:=%lld
buffersize=%lld\n",blknum,jump,buffersize);
#endif
 return FALSE;
 }
#ifdef DEBUG
printf(" Jumping to %lld blknum=%d buffersize=%lld\n",jump,blknum,buffersize);
 #endif
 return (fd+jump);
}

int
get_FAT_block (char* fd, int blknum, int *dest,int buffersize)
{
 static int FATblk;
 // static int currFATblk = -1;

 FATblk = htoi((char*) &FAT[blknum / (OUR_BLK_SIZE / sizeof
(int))],FOREMOST_LITTLE_ENDIAN);
#ifdef DEBUG
 printf("****blknum:=%d FATblk:=%d currFATblk:=%d\n",blknum,FATblk,currFATblk);

#endif
 if (currFATblk != FATblk)
 {
#ifdef DEBUG
 printf("*****blknum:=%d FATblk:=%d\n",blknum,FATblk);

#endif
 if(!get_block (fd, FATblk, (char *) dest,buffersize))
 {
 return FALSE;
 }
 currFATblk = FATblk;
 }
 return TRUE;
}

93

void
dump_header (struct OLE_HDR *h)
{
 int i, *x;
 //struct OLE_HDR *h = (struct OLE_HDR *) buffer;

 // fprintf (stderr, "clsid = ");
 //printx(h->clsid,0,16);
 fprintf (stderr, "\nuMinorVersion = %u\t", htos((char*)&h-
>uMinorVersion,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uDllVersion = %u\t", htos((char*) &h-
>uDllVersion,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uByteOrder = %u\n", htos((char*) &h-
>uByteOrder,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uSectorShift = %u\t", htos((char *) &h-
>uSectorShift,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uMiniSectorShift = %u\t", htos((char *) &h-
>uMiniSectorShift,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "reserved = %u\n", htos((char *) &h-
>reserved,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "reserved1 = %u\t", htoi((char *) &h-
>reserved1,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "reserved2 = %u\t", htoi((char *) &h-
>reserved2,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "csectMiniFat = %u\t",htoi((char *) &h-
>csectMiniFat,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "miniSectorCutoff = %u\n",htoi((char *) &h-
>miniSectorCutoff,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "root_start_block = %u\n", htoi((char *) &h-
>root_start_block,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "dir flag = %u\n", htoi((char *) &h-
>dir_flag,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "# FAT blocks = %u\n", htoi((char *) &h-
>num_FAT_blocks,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "FAT_next_block = %u\n", htoi((char *) &h-
>FAT_next_block,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "# extra FAT blocks = %u\n", htoi((char *) &h-
>num_extra_FAT_blocks,FOREMOST_LITTLE_ENDIAN));
 x = (int *) &h[1];
 fprintf (stderr, "bbd list:");
 for (i = 0; i < 109; i++, x++)
 {
 if ((i % 10) == 0)
 fprintf (stderr, "\n");
 if(*x=='\xff') break;
 fprintf (stderr, "%x ", *x);
 }
 fprintf (stderr, "\n **************End of header***********\n");
}

struct OLE_HDR* reverseBlock(struct OLE_HDR *dest,struct OLE_HDR *h)
{
 int i, *x,*y;
 dest->uMinorVersion=htos((char*)&h->uMinorVersion,FOREMOST_LITTLE_ENDIAN);
 dest->uDllVersion=htos((char*) &h->uDllVersion,FOREMOST_LITTLE_ENDIAN);
 dest->uByteOrder=htos((char*) &h->uByteOrder,FOREMOST_LITTLE_ENDIAN); /*28*/
 dest->uSectorShift=htos((char *) &h->uSectorShift,FOREMOST_LITTLE_ENDIAN);
 dest->uMiniSectorShift=htos((char *) &h-
>uMiniSectorShift,FOREMOST_LITTLE_ENDIAN);/*32*/
 dest->reserved=htos((char *) &h->reserved,FOREMOST_LITTLE_ENDIAN); /*34*/
 dest->reserved1=htoi((char *) &h->reserved1,FOREMOST_LITTLE_ENDIAN); /*36*/
 dest->reserved2=htoi((char *) &h->reserved2,FOREMOST_LITTLE_ENDIAN); /*40*/

 dest->num_FAT_blocks=htoi((char *) &h->num_FAT_blocks,FOREMOST_LITTLE_ENDIAN);
 /*44*/
 dest->root_start_block=htoi((char *) &h->root_start_block,FOREMOST_LITTLE_ENDIAN);
/*48*/
 dest->dfsignature=htoi((char *) &h->dfsignature,FOREMOST_LITTLE_ENDIAN);
 /*52*/

94

 dest->miniSectorCutoff=htoi((char *) &h->miniSectorCutoff,FOREMOST_LITTLE_ENDIAN);
 /*56*/
 dest->dir_flag=htoi((char *) &h->dir_flag,FOREMOST_LITTLE_ENDIAN);
 /*60 first sec in the mini fat chain*/
 dest->csectMiniFat=htoi((char *) &h->csectMiniFat,FOREMOST_LITTLE_ENDIAN); /*64
number of sectors in the minifat */
 dest->FAT_next_block=htoi((char *) &h->FAT_next_block,FOREMOST_LITTLE_ENDIAN); /*68*/
 dest->num_extra_FAT_blocks=htoi((char *) &h-
>num_extra_FAT_blocks,FOREMOST_LITTLE_ENDIAN);

 x = (int *) &h[1];
 y= (int *) &dest[1];
 for (i = 0; i < 109; i++, x++)
 {
 *y=htoi((char *) x,FOREMOST_LITTLE_ENDIAN);
 y++;
 }
 return dest;
}

void dump_ole_header (struct OLE_HDR *h)
{
 int i, *x;

 //fprintf (stderr, "clsid = ");
 //printx(h->clsid,0,16);
 fprintf (stderr, "\nuMinorVersion = %u\t", htos((char*)&h-
>uMinorVersion,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uDllVersion = %u\t", htos((char*) &h-
>uDllVersion,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uByteOrder = %u\n", htos((char*) &h-
>uByteOrder,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uSectorShift = %u\t", htos((char *) &h-
>uSectorShift,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "uMiniSectorShift = %u\t", htos((char *) &h-
>uMiniSectorShift,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "reserved = %u\n", htos((char *) &h-
>reserved,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "reserved1 = %u\t", htoi((char *) &h-
>reserved1,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "reserved2 = %u\t", htoi((char *) &h-
>reserved2,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "csectMiniFat = %u\t",htoi((char *) &h-
>csectMiniFat,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "miniSectorCutoff = %u\n",htoi((char *) &h-
>miniSectorCutoff,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "root_start_block = %u\n", htoi((char *) &h-
>root_start_block,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "dir flag = %u\n", htoi((char *) &h-
>dir_flag,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "# FAT blocks = %u\n", htoi((char *) &h-
>num_FAT_blocks,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "FAT_next_block = %u\n", htoi((char *) &h-
>FAT_next_block,FOREMOST_LITTLE_ENDIAN));
 fprintf (stderr, "# extra FAT blocks = %u\n", htoi((char *) &h-
>num_extra_FAT_blocks,FOREMOST_LITTLE_ENDIAN));
 x = (int *) &h[1];
 fprintf (stderr, "bbd list:");
 for (i = 0; i < 109; i++, x++)
 {
 if ((i % 10) == 0)
 fprintf (stderr, "\n");
 if(*x=='\xff') break;
 fprintf (stderr, "%x ", htoi((char *) x,FOREMOST_LITTLE_ENDIAN));
 }
 fprintf (stderr, "\n **************End of header***********\n");
}

int

95

dump_dirent (int which_one)
{
 int i;
 char *p;
 short unknown;
 struct OLE_DIR *dir;

 dir = (struct OLE_DIR *) &buffer[which_one * sizeof (struct OLE_DIR)];
 if (dir->type == NO_ENTRY)
 return TRUE;
 fprintf (stderr, "DIRENT_%d :\t", dir_count);
 fprintf (stderr, "%s\t", (dir->type == ROOT) ? "root directory" :
 (dir->type == STORAGE) ? "directory" : "file");

/* get UNICODE name */
 p = dir->name;
 if (*p < ' ')
 {
 unknown = *((short *) p);
 //fprintf (stderr, "%04x\t", unknown);
 p += 2; /* step over unknown short */
 }
 for (i = 0; i < dir->namsiz; i++, p++)
 {
 if (*p && (*p > 0x1f))
 {
 if(isprint(*p))
 {
 fprintf (stderr, "%c", *p);
 }
 else
 {
 printf("*** Invalid char %x ***\n",*p);
 return FALSE;
 }
 }
 }
 fprintf (stderr, "\n");
 //fprintf (stderr, "prev_dirent = %lu\t", dir->prev_dirent);
 //fprintf (stderr, "next_dirent = %lu\t", dir->next_dirent);
 //fprintf (stderr, "dir_dirent = %lu\n", dir->dir_dirent);
 //fprintf (stderr, "name = %s\t", dir->name);
 fprintf (stderr, "namsiz = %u\t", dir->namsiz);
 fprintf (stderr, "type = %d\t", dir->type);
 fprintf (stderr, "reserved = %u\n", dir->reserved);

 fprintf (stderr, "start block = %lu\n", dir->start_block);
 fprintf (stderr, "size = %lu\n", dir->size);
 fprintf (stderr, "\n **************End of dirent***********\n");
 return TRUE;
}

D. OLE.H
#define TRUE 1
#define FALSE 0
#define SPECIAL_BLOCK -3
#define END_OF_CHAIN -2
#define UNUSED -1

#define NO_ENTRY 0
#define STORAGE 1
#define STREAM 2
#define ROOT 5
#define SHORT_BLOCK 3

#define FAT_START 0x4c
#define OUR_BLK_SIZE 512
#define DIRS_PER_BLK 4
#define MIN(x,y) ((x) < (y) ? (x) : (y))

96

#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <ctype.h>

struct OLE_HDR
{
 char magic[8]; /*0*/
 char clsid[16]; /*8*/
 unsigned short uMinorVersion; /*24*/
 unsigned short uDllVersion; /*26*/
 unsigned short uByteOrder; /*28*/
 unsigned short uSectorShift; /*30*/
 unsigned short uMiniSectorShift;/*32*/
 unsigned short reserved; /*34*/
 unsigned long reserved1; /*36*/
 unsigned long reserved2; /*40*/
 unsigned long num_FAT_blocks; /*44*/
 unsigned long root_start_block; /*48*/
 unsigned long dfsignature; /*52*/
 unsigned long miniSectorCutoff; /*56*/
 unsigned long dir_flag; /*60 first sec in the mini fat chain*/
 unsigned long csectMiniFat; /*64 number of sectors in the minifat */
 unsigned long FAT_next_block; /*68*/
 unsigned long num_extra_FAT_blocks; /*72*/

 /* FAT block list starts here !! first 109 entries */
};

struct OLE_DIR
{
 char name[64];
 unsigned short namsiz;
 char type;
 char bflags; //0 or 1
 unsigned long prev_dirent;
 unsigned long next_dirent;
 unsigned long dir_dirent;
 char clsid[16];
 unsigned long userFlags;
 int secs1;
 int days1;
 int secs2;
 int days2;
 unsigned long start_block; //starting SECT of stream
 unsigned long size;
 short reserved; //must be 0
};

struct DIRECTORY
{
 char name[64];
 int type;
 int level;
 int start_block;
 int size;
 int next;
 int prev;
 int dir;
 int s1;
 int s2;
 int d1;
 int d2;
}
 *dirlist, *dl;

97

int get_dir_block (char* fd, int blknum,int buffersize);
int get_dir_info (char *src);
void extract_stream (char* fd, int blknum, int size);
void dump_header (struct OLE_HDR *h);
int dump_dirent (int which_one);
int get_block (char* fd, int blknum, char *dest,long long int buffersize);
int get_FAT_block (char* fd, int blknum,int* dest,int buffersize);
int reorder_dirlist (struct DIRECTORY *dir, int level);

char* get_ole_block (char* fd, int blknum,unsigned long long buffersize);
struct OLE_HDR* reverseBlock(struct OLE_HDR *dest,struct OLE_HDR *h);

void dump_ole_header (struct OLE_HDR *h);
void *Malloc (size_t bytes);
int Read (int fd, char *buf, int size);
int Write (int fd, char *buf, int size);
void die (char *fmt, void *arg);
void initOLE();

E. ENGINE.C
/* FOREMOST
 *
 * By Jesse Kornblum and Kris Kendall
 *
 * This is a work of the US Government. In accordance with 17 USC 105,
 * copyright protection is not available for any work of the US Government.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 */

#include "main.h"

int user_interrupt(f_state *s, f_info *i)
{
 audit_msg(s,"Interrupt received at %s", current_time());

 /* RBF - Write user_interrupt */
 fclose(i->handle);
 free(s);
 free(i);
 exit(-1);
 return FALSE;
}

char* grabFromDisk(unsigned long long offset, f_info *i,unsigned long long length)
{

 unsigned long long bytesread = 0;
 char* newbuf = (char*) malloc(length*sizeof(char));

98

 fseeko(i->handle,offset,SEEK_SET);
 bytesread = fread(newbuf,1,length,i->handle);
 if(bytesread!=length) return NULL;
 else return newbuf;
}

/*
 Perform a modified boyer-moore string search (w/ support for wildcards and case-
insensitive searches)
 and allows the starting position in the buffer to be manually set, which allows data
to be skipped
*/

unsigned char *bm_search_skipn(char *needle, size_t needle_len,unsigned char *haystack,
size_t haystack_len,
 size_t table[UCHAR_MAX + 1], int casesensitive,int searchtype, int start_pos)
{
 register size_t shift=0;
 register size_t pos = start_pos;
 unsigned char *here;

 if(needle_len == 0)
 return haystack;

 if (searchtype == SEARCHTYPE_FORWARD || searchtype == SEARCHTYPE_FORWARD_NEXT)
 {
 while (pos < haystack_len)
 {
 while(pos < haystack_len && (shift = table[(unsigned char)haystack[pos]]) >
0)
 {
 pos += shift;
 }
 if (0 == shift)
 {
 here = (char *)&haystack[pos-needle_len+1];

 if (0 == memwildcardcmp(needle,here, needle_len, casesensitive))
 {
 return(here);
 }
 else pos++;
 }
 }
 return NULL;
 }
 else if(searchtype == SEARCHTYPE_REVERSE) //Run our search backwards
 {
 while (pos < haystack_len)
 {
 while(pos < haystack_len && (shift = table[(unsigned
char)haystack[haystack_len-pos-1]]) > 0)
 {
 pos += shift;
 }
 if (0 == shift)
 {
 if (0 == memwildcardcmp(needle,here = (char *)&haystack[haystack_len-pos-
1], needle_len, casesensitive))
 {
 return(here);
 }
 else pos++;
 }
 }
 return NULL;
 }
 return NULL;
}

99

/*
 Perform a modified boyer-moore string search (w/ support for wildcards and case-
insensitive searches)
 and allows the starting position in the buffer to be manually set, which allows data
to be skipped
*/

unsigned char *bm_search(char *needle, size_t needle_len,unsigned char *haystack, size_t
haystack_len,
size_t table[UCHAR_MAX + 1], int case_sen,int searchtype)
{
 //printf("The needle2 is:\t");
 //printx(needle,0,needle_len);

 return bm_search_skipn(needle,
 needle_len,
 haystack,
 haystack_len,
 table,
 case_sen,
 searchtype,
 needle_len - 1);

}

void setup_stream(f_state *s, f_info *i)
{
 char buffer[MAX_STRING_LENGTH];
 unsigned long long skip=(((unsigned long long)s->skip)*((unsigned long long)s-
>block_size));
#ifdef DEBUG
 printf("s->skip=%d s->block_size=%d total=%llu\n",s->skip,s->block_size,(((unsigned
long long)s->skip)*((unsigned long long)s->block_size)));
#endif
 i->bytes_read = 0;
 i->total_megs = i->total_bytes / ONE_MEGABYTE;

 if (i->total_bytes != 0)
 audit_msg(s,"Length: %s (%llu bytes)",
 human_readable(i->total_bytes,buffer),i->total_bytes);
 else
 audit_msg(s,"Length: Unknown");

if(s->skip!=0)
{
 audit_msg(s,"Skipping: %s (%llu bytes)",
 human_readable(skip,buffer),skip);
 fseeko(i->handle,skip,SEEK_SET);
 if(i->total_bytes!=0) i->total_bytes-=skip;
}
 audit_msg(s," ");

#ifdef __WIN32
 i->last_read = 0;
 i->overflow_count = 0;
#endif

}

int indBlock(char* foundat,unsigned long long buflen,int bs)
{

 unsigned char* temp=foundat;
 int jump=12*bs;
 unsigned int block=0;
 unsigned int block2=0;
 unsigned int dif=0;
 int i=0;

100

 unsigned int one=1;
 //int reconstruct=FALSE;

 /*Make sure we don't jump past the end of the buffer*/
 if(buflen < jump+16) return FALSE;

 while(i < bs/4)
 {
 block=htoi(&temp[jump+(i*4)],FOREMOST_LITTLE_ENDIAN);

 if(block < 0) return FALSE;
 if(block==0)
 {
 break;
 }
 i++;
 block2=htoi(&temp[jump+(i*4)],FOREMOST_LITTLE_ENDIAN);
 if(block2 < 0) return FALSE;

 if(block2==0)
 {
 break;
 }

 dif=block2-block;

 if(dif==one)
 {
 //printf("DIF==1\n");
#ifdef DEBUG
 printf("block1:=%u, block2:=%u dif=%u\n",block,block2,dif);
#endif
 }
 else
 {
 return FALSE;
 }
#ifdef DEBUG
 printf("block1:=%u, block2:=%u dif=%u\n",block,block2,dif);
#endif
 }
 if(i==0) return FALSE;

 /*Check if the rest of the bytes are zero'd out */
 for(i=i+1;i < bs/4;i++)
 {
 block=htoi(&temp[jump+(i*4)],FOREMOST_LITTLE_ENDIAN);
 if(block!=0)
 {
 return FALSE;
 }
 }

 return TRUE;
}
//***
**/

int search_chunk(f_state* s, unsigned char* buf, f_info *i, unsigned long long
chunk_size, unsigned long long f_offset)
{

 unsigned long long c_offset = 0;
 unsigned char* foundat=buf;
 unsigned char* current_pos=NULL;
 unsigned char* header_pos=NULL;
 unsigned char* newbuf=NULL;

 unsigned long long current_buflen=chunk_size;
 int tryBS[3]={4096,1024,512};
 s_spec * needle=NULL;

101

 int j=0;
 int bs=0;
 int rem=0;
 int x=0;
 for(j=0;j< s->num_builtin;j++)
 {
 needle=&search_spec[j];
 foundat=buf; /*reset the buffer for the next search spec*/
#ifdef DEBUG
 printf(" SEARCHING FOR %s's\n",needle->suffix);
#endif
 bs=0;
 current_buflen=chunk_size;
 while(foundat)
 {
 current_buflen=chunk_size-(foundat-buf);
#ifdef DEBUG
 printf("current buf:=%lld\n",current_buflen);
#endif
 if (signal_caught == SIGTERM || signal_caught == SIGINT)
 {
 user_interrupt(s,i);
 printf ("Cleaning up.\n");
 signal_caught = 0;
 }
 if(get_mode(s,mode_quiet))/*RUN QUIET SEARCH*/
 {
#ifdef DEBUG
 printf("quick mode is on\n");
#endif
 /*Check if we are not on a block head, adjust if so*/
 rem=(foundat-buf) % s->block_size;
 if(rem !=0)
 {
 foundat+=(s->block_size-rem);
 }

 if(memwildcardcmp(needle->header,foundat,needle->header_len,needle-
>case_sen)!=0)
 {
 /*No match, jump to the next block*/
 //printf(" No match jumping bs\n");
 if(current_buflen > s->block_size)
 {
 foundat+=s->block_size;
 continue;
 }
 else /*We are out of buffer lets go to the next search
spec*/
 {
 foundat=NULL;
 break;
 }
 }
 }
 else /*RUN STANDARD SEARCH*/
 {

 //printf("current buf:=%lld\n",current_buflen);
 foundat = bm_search(needle->header,
 needle->header_len,
 foundat,
 current_buflen, //How much to search
through
 needle->header_bm_table,
 needle->case_sen, //casesensative
 SEARCHTYPE_FORWARD);

 header_pos=foundat;
 }

102

 if(foundat != NULL && foundat >= 0) /*We got something, run the
appropriate heuristic to find the EOF*/
 {
 current_buflen=chunk_size-(foundat-buf);
#ifdef DEBUG
// printf("current buf2:=%lld\n",current_buflen);
#endif

 if(get_mode(s,mode_ind_blk))
 {
#ifdef DEBUG
 // printf("ind blk detection on\n");
#endif

 for(x=0;x<3;x++)
 {
 bs=tryBS[x];

 if(indBlock(foundat,current_buflen,bs))
 {
 if(get_mode(s,mode_verbose))
 {
 audit_msg(s,"\n Indirect Block Found
using bs:=%d in a %s\n",bs,needle->suffix);

 }
#ifdef DEBUG
 printf("performing mem move\n");
#endif
 if(!memmove(foundat + 12*bs, foundat + 13*bs,
current_buflen - 13*bs)) break;

#ifdef DEBUG
 printf("performing mem move complete\n");
#endif
 current_buflen-=bs;
 //current_buflen=chunk_size-(foundat-buf);
 break;
 }

 }

 }

 c_offset = (foundat-buf);
 current_pos=foundat;
 foundat=extractFile(s,c_offset,foundat, current_buflen,
needle,f_offset);

 if(!foundat)
 {
 if(current_buflen < needle->max_len)/*We need to bridge the gap*/
 {
#ifdef DEBUG
 printf(" Bridge the gap\n");
#endif
 //grow buffer, call again
 newbuf=grabFromDisk(c_offset+f_offset,i,needle->max_len);
 if(newbuf==NULL) break;
 current_pos=extractFile(s,c_offset,current_pos,
current_buflen, needle,f_offset);
 if(!current_pos)
 {
 /*We failed so we should put the file* back*/
 fseeko(i->handle,c_offset+f_offset,SEEK_SET);
 }
 free(newbuf);

103

 }
 else
 {
#ifdef DEBUG
 printf(" RESET the FILE*\n");
#endif
 foundat=header_pos;/*reset the foundat pointer to the
location of the last header*/
 foundat+=needle->header_len+1;/*jump past the header*/
 }
 }

 }
 }//end while
 }
 return TRUE;
}

int search_stream(f_state *s, f_info *i)
{
 unsigned long long bytesread =0;
 unsigned long long f_offset=0;
 unsigned long long chunk_size=((unsigned long long) s->chunk_size)*MEGABYTE;
 unsigned char* buf=(unsigned char *)malloc(sizeof(char)*chunk_size);

 setup_stream(s,i);
#ifdef DEBUG
 printf("\n\t READING THE FILE INTO MEMORY\n");
#endif
 while((bytesread = fread(buf,1,chunk_size,i->handle)) > 0)
 {
 if (signal_caught == SIGTERM || signal_caught == SIGINT)
 {
 user_interrupt(s,i);
 printf ("Cleaning up.\n");
 signal_caught = 0;
 }
#ifdef DEBUG
 printf("\n\tbytes_read:=%llu\n",bytesread);
#endif
 search_chunk(s,buf,i,bytesread,f_offset);
 f_offset+=bytesread;
 displayPosition(s,i,f_offset);
 /*
 f_offset-=50;//jump back 50 bytes to make sure we don't miss anything
 fseeko(i->handle,f_offset,SEEK_SET);
 */
 }
#ifdef DEBUG
 printf("\n\tDONE READING bytes_read:=%llu\n",bytesread);
#endif
 if (signal_caught == SIGTERM || signal_caught == SIGINT)
 {
 user_interrupt(s,i);
 printf ("Cleaning up.\n");
 signal_caught = 0;
 }
 free(buf);
 return FALSE;
}

void audit_start(f_state *s, f_info *i)
{
 audit_msg(s,FOREMOST_DIVIDER);
 audit_msg(s,"File: %s", i->file_name);
 audit_msg(s,"Start: %s", current_time());
}

void audit_finish(f_state *s, f_info *i)
{
 audit_msg(s,"Finish: %s", current_time());

104

}

int process_file(f_state *s)
{
 //printf("processing file\n");
 f_info *i = (f_info *)malloc(sizeof(f_info));
 char temp[PATH_MAX];

 if ((realpath(s->input_file,temp)) == NULL)
 {
 print_error(s,s->input_file,strerror(errno));
 return TRUE;
 }

 i->file_name = strdup(s->input_file);
 i->is_stdin = FALSE;
 audit_start(s,i);
// printf("opening file %s\n",i->file_name);
#if defined(__LINUX)
#ifdef DEBUG
 printf("Using 64 bit fopen\n");
#endif
 i->handle = fopen64(i->file_name,"rb");
#elif defined (__WIN32)

 i->handle = fopen(i->file_name,"rb");
#else
 i->handle = fopen(i->file_name,"rb");
#endif
 if (i->handle == NULL)
 {
 //printf("FILE OPEN FAILED\n");
 print_error(s,s->input_file,strerror(errno));
 audit_msg(s,"Error: %s",strerror(errno));
 return TRUE;
 }

// printf("calling find total file size\n");

 i->total_bytes = find_file_size(i->handle);
 //printf("tot_bytes:=%d\n",i->total_bytes);
 search_stream(s,i);
 audit_finish(s,i);

 fclose(i->handle);
 free(i);
 return FALSE;
}

int process_stdin(f_state *s)
{
 f_info *i = (f_info *)malloc(sizeof(f_info));

 i->file_name = strdup("stdin");
 s->input_file= "stdin";
 i->handle = stdin;
 i->is_stdin = TRUE;

 /* We can't compute the size of this stream, we just ignore it*/
 i->total_bytes = 0;
//printf("Starting audit\n");
 audit_start(s,i);
//printf("calling ss\n");

 search_stream(s,i);

105

 free(i->file_name);
 free(i);
 return FALSE;
}

F. DIR.C
#include "main.h"

int is_empty_directory(DIR *temp)
{
 /* Empty directories contain two entries for . and ..
 A directory with three entries, therefore, is not empty */
 if (readdir(temp) && readdir(temp) && readdir(temp))
 return FALSE;

 return TRUE;
}

int make_new_directory(f_state *s, char *fn)
{

#ifdef __WIN32
 if (mkdir(fn))
#else
 mode_t new_mode = (S_IRUSR | S_IWUSR | S_IXUSR |
 S_IRGRP | S_IWGRP | S_IXGRP |
 S_IROTH | S_IWOTH);
 if (mkdir(fn,new_mode))
#endif
 {
 print_error(s,get_output_directory(s),strerror(errno));
 return TRUE;
 }

 return FALSE;
}

char* clean_time_string(char* time)
{
 int len=strlen(time);
 int i=0;

 for(i=0;i<len;i++)
 {
#ifdef __WIN32
 if(time[i]==' ' || time[i]=='.')
 {
 time[i]='_';
 }
 else if(time[i]==':' && time[i+1]!='\\')
 {
 time[i]='_';
 }
#else
 if(time[i]==' ' || time[i]=='.' || time[i]==':')
 {
 time[i]='_';
 }
#endif
 }
 return time;
}

int create_output_directory(f_state *s)

106

{
 DIR *d;
 char dir_name[MAX_STRING_LENGTH];

 memset(dir_name,0,MAX_STRING_LENGTH);
 strcpy(dir_name,get_output_directory(s));
 strcat(dir_name,"_");
 strcat(dir_name,get_start_time(s));
 clean_time_string(dir_name);

 set_output_directory(s,dir_name);

#ifdef __DEBUG
 printf ("Checking output directory %s\n", get_output_directory(s));
#endif

 if ((d = opendir(get_output_directory(s))) != NULL)
 {
 /* The directory exists already. It MUST be empty for us to continue */
 if(!is_empty_directory(d))
 {
 printf("TIME:= %s\n",get_start_time(s));
 }

 /* The directory exists and is empty. We're done! */
 closedir(d);
 return FALSE;
 }

 /* The error value ENOENT means that either the directory doesn't exist,
 which is fine, or that the filename is zero-length, which is bad.
 All other errors are, of course, bad. */
 if (errno != ENOENT)
 {
 print_error(s,get_output_directory(s),strerror(errno));
 return TRUE;
 }

 if (strlen(get_output_directory(s)) == 0)
 {
 /* Careful! Calling print_error will try to display a filename
 that is zero characters! In theory this should never happen
 as our call to realpath should avoid this. But we'll play it safe. */
 print_error(s,"(output_directory)","Output directory name unknown");
 return TRUE;
 }

 return (make_new_directory(s,get_output_directory(s)));
}

int create_sub_dirs(f_state *s)
{
 int i=0;
 int j=0;
 char dir_name[MAX_STRING_LENGTH];
 char ole_types[6][4]={"ppt","doc","xls","sdw","mbd","vis"};
 char riff_types[2][4]={"avi","wav"};

 for(i=0;i<s->num_builtin;i++)
 {
 memset(dir_name,0,MAX_STRING_LENGTH-1);
 strcpy(dir_name,get_output_directory(s));
 strcat(dir_name,"/");
 strcat(dir_name,search_spec[i].suffix);
 make_new_directory(s,dir_name);
 if(search_spec[i].type==OLE)
 {
 for(j=0;j<6;j++)
 {
 memset(dir_name,0,MAX_STRING_LENGTH-1);

107

 strcpy(dir_name,get_output_directory(s));
 strcat(dir_name,"/");
 strcat(dir_name,ole_types[j]);
 make_new_directory(s,dir_name);
 }
 }
 else if(search_spec[i].type==RIFF)
 {
 for(j=0;j<2;j++)
 {
 memset(dir_name,0,MAX_STRING_LENGTH-1);
 strcpy(dir_name,get_output_directory(s));
 strcat(dir_name,"/");
 strcat(dir_name,riff_types[j]);
 make_new_directory(s,dir_name);
 }
 }

 }
 return TRUE;
}

 int writeToDisk(f_state *s,s_spec * needle,unsigned long long len,unsigned char* buf,
unsigned long long t_offset)
 {

 char fn[MAX_STRING_LENGTH];
 FILE* f;
 long byteswritten = 0;
 long int block=(t_offset/s->block_size);
//Name files based on there block offset

 snprintf(fn,MAX_STRING_LENGTH,"%s/%s/%0*ld.%s",
 s->output_directory,needle->suffix,8,block,needle->suffix);

 if(!(f = fopen(fn,"w")))
 {

 }

#ifdef __WIN32
/*We need to EXPLICITLY open the file in binary mode for Win32
 this was very annoying to find out ;-)... */
// setmode(fileno(fn),O_BINARY);
#endif

 if ((byteswritten = fwrite(buf,sizeof(char),len,f)) != len)
 {
 //ERROR
 }

 if(fclose(f))
 {

 }

/* We only say that we wrote the file if we were successful. This
 statement was originally immediately after the snprintf for the
 filename. Because we use the variable fileswritten elsewhere in
 this function I've moved it down here. (JK) */
 audit_msg(s,"%d:\t %ld.%s",s->fileswritten,block,needle->suffix);

 s->fileswritten++;
 needle->found++;
 return TRUE;
 }

108

G. HELPERS.C
/* MD5DEEP - helpers.c
 *
 * By Jesse Kornblum
 *
 * This is a work of the US Government. In accordance with 17 USC 105,
 * copyright protection is not available for any work of the US Government.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 */

#include "main.h"

/* Removes any newlines at the end of the string buf.
 Works for both *nix and Windows styles of newlines.
 Returns the new length of the string. */
unsigned int chop(char *buf)
{
 /* Windows newlines are 0x0d 0x0a, *nix are 0x0a */
 unsigned int len = strlen(buf);
 if (buf[len-1] == 0x0a)
 {
 if (buf[len-2] == 0x0d)
 {
 buf[len-2] = buf[len-1];
 }
 buf[len-1] = buf[len];
 }
 return strlen(buf);
}

char *units(unsigned int c)
{
 switch (c) {
 case 0: return "B";
 case 1: return "KB";
 case 2: return "MB";
 case 3: return "GB";
 case 4: return "TB";
 case 5: return "PB";
 case 6: return "EB";

 /* Steinbach's Guideline for Systems Programming:
 Never test for an error condition you don't know how to handle.

 Granted, given that no existing system can handle anything
 more than 18 exabytes, this shouldn't be an issue. But how do we
 communicate that 'this shouldn't happen' to the user? */
 default: return "??";
 }
}

char *human_readable(off_t size, char *buffer)
{
 unsigned int count = 0;
 while (size > 1024)
 {
 size /= 1024;
 ++count;
 }

 /* The size will be, at most, 1023, and the units will be
 two characters no matter what. Thus, the maximum length of
 this string is six characters. e.g. strlen("1023 EB") = 6 */
 snprintf(buffer,8,"%llu %s",size,units(count));

109

 return buffer;
}

char *current_time(void)
{
 time_t now = time(NULL);
 char *ascii_time = ctime(&now);
 chop(ascii_time);
 return ascii_time;
}

/* Shift the contents of a string so that the values after 'new_start'
 will now begin at location 'start' */
void shift_string(char *fn, int start, int new_start)
{
 if (start < 0 || start > strlen(fn) || new_start < 0 || new_start < start)
 return;

 while (new_start < strlen(fn))
 {
 fn[start] = fn[new_start];
 new_start++;
 start++;
 }

 fn[start] = 0;
}

void
make_magic(void){printf("%s%s","\x53\x41\x4E\x20\x44\x49\x4D\x41\x53\x20\x48\x49\x47\x48\
x20\x53\x43\x48\x4F\x4F\x4C\x20\x46\x4F\x4F\x54\x42\x41\x4C\x4C\x20\x52\x55\x4C\x45\x53\x
21",NEWLINE);}

#if defined (__UNIX)

/* Return the size, in bytes of an open file stream. On error, return 0 */
#if defined (__LINUX)

off_t find_file_size(FILE *f)
{
//printf(" Computing file size\n");
 off_t num_sectors = 0;
 int fd = fileno(f);
 struct stat sb;

 if (fstat(fd,&sb))
 {
 return 0;
 }
 if (S_ISREG(sb.st_mode) || S_ISDIR(sb.st_mode))
 return sb.st_size;
 else if (S_ISCHR(sb.st_mode) || S_ISBLK(sb.st_mode))
 {
 if (ioctl(fd, BLKGETSIZE, &num_sectors))
 {
#if defined(__DEBUG)
 fprintf(stderr,"%s: ioctl call to BLKGETSIZE failed.%s",
 __progname,NEWLINE);
#endif
 }
 else
 return (num_sectors * 512);
 }

110

 return 0;
}

#elif defined (__MACOSX)

#include <stdint.h>
#include <sys/ioctl.h>
#include <sys/disk.h>

off_t find_file_size(FILE *f) {
#ifdef DEBUG
 printf(" FIND MAC file size\n");
#endif
 return 0; /*FIX ME*/
 struct stat info;
 off_t total = 0;
 off_t original = ftello(f);
 int ok = TRUE, fd = fileno(f);

 /* I'd prefer not to use fstat as it will follow symbolic links. We don't
 follow symbolic links. That being said, all symbolic links *should*
 have been caught before we got here. */

 fstat(fd, &info);

 /* Block devices, like /dev/hda, don't return a normal filesize.
 If we are working with a block device, we have to ask the operating
 system to tell us the true size of the device.

 The following only works on Linux as far as I know. If you know
 how to port this code to another operating system, please contact
 the current maintainer of this program! */

 if (S_ISBLK(info.st_mode)) {
 daddr_t blocksize = 0;
 daddr_t blockcount = 0;

 /* Get the block size */
 if (ioctl(fd, DKIOCGETBLOCKSIZE,blocksize) < 0) {
 ok = FALSE;
#if defined(__DEBUG)
 perror("DKIOCGETBLOCKSIZE failed");
#endif
 }

 /* Get the number of blocks */
 if (ok) {
 if (ioctl(fd, DKIOCGETBLOCKCOUNT, blockcount) < 0) {
#if defined(__DEBUG)
 perror("DKIOCGETBLOCKCOUNT failed");
#endif
 }
 }

 total = blocksize * blockcount;

 }

 else {

 /* I don't know why, but if you don't initialize this value you'll
 get wildly innacurate results when you try to run this function */

 if ((fseeko(f,0,SEEK_END)))
 return 0;
 total = ftello(f);
 if ((fseeko(f,original,SEEK_SET)))
 return 0;
 }

111

 return (total - original);
}

#else

/* This is code for general UNIX systems
 (e.g. NetBSD, FreeBSD, OpenBSD, etc) */

static off_t
midpoint (off_t a, off_t b, long blksize)
{
 off_t aprime = a / blksize;
 off_t bprime = b / blksize;
 off_t c, cprime;

 cprime = (bprime - aprime) / 2 + aprime;
 c = cprime * blksize;

 return c;
}

off_t find_dev_size(int fd, int blk_size)
{

 off_t curr = 0, amount = 0;
 void *buf;

 if (blk_size == 0)
 return 0;

 buf = malloc(blk_size);

 for (;;) {
 ssize_t nread;

 lseek(fd, curr, SEEK_SET);
 nread = read(fd, buf, blk_size);
 if (nread < blk_size) {
 if (nread <= 0) {
 if (curr == amount) {
 free(buf);
 lseek(fd, 0, SEEK_SET);
 return amount;
 }
 curr = midpoint(amount, curr, blk_size);
 } else { /* 0 < nread < blk_size */
 free(buf);
 lseek(fd, 0, SEEK_SET);
 return amount + nread;
 }
 } else {
 amount = curr + blk_size;
 curr = amount * 2;
 }
 }
 free(buf);
 lseek(fd, 0, SEEK_SET);
 return amount;
}

off_t find_file_size(FILE *f)
{
 int fd = fileno(f);
 struct stat sb;
 return 0; /*FIX ME SOLARIS FILE SIZE CAUSES SEG FAULT*/

112

 if (fstat(fd,&sb))
 return 0;

 if (S_ISREG(sb.st_mode) || S_ISDIR(sb.st_mode))
 return sb.st_size;
 else if (S_ISCHR(sb.st_mode) || S_ISBLK(sb.st_mode))
 return find_dev_size(fd,sb.st_blksize);

 return 0;
}

#endif /* UNIX Flavors */
#endif /* ifdef __UNIX */

#if defined(__WIN32)
off_t find_file_size(FILE *f)
{
 off_t total = 0, original = ftello(f);

 if ((fseeko(f,0,SEEK_END)))
 return 0;

 total = ftello(f);
 if ((fseeko(f,original,SEEK_SET)))
 return 0;

 return total;
}

#endif /* ifdef __WIN32 */

void print_search_specs(f_state *s)
{
 int i=0;
 int j=0;
 printf("\nDUMPING BUILTIN SEARCH INFO\n\t");
 for(i=0;i < s->num_builtin;i++)
 {

 printf("%s:\n\t footer_len:=%d, header_len:=%d, max_len:=%llu
",search_spec[i].suffix,search_spec[i].footer_len,search_spec[i].header_len,search_spec[i
].max_len);
 printf("\n\t header:\t");
 printx(search_spec[i].header,0,search_spec[i].header_len);
 printf("\t footer:\t");
 printx(search_spec[i].footer,0,search_spec[i].footer_len);
 for(j=0;j<search_spec[i].num_markers;j++)
 {
 printf("\tmarker: \t");

 printx(search_spec[i].markerlist[j].value,0,search_spec[i].markerlist[j].len);
 }

 }

}

void print_stats(f_state *s)
{
 int i=0;
 audit_msg(s,"\nFILES EXTRACTED\n\t");
 for(i=0;i < s->num_builtin;i++)
 {

 if(search_spec[i].found!=0)
 {
 if(search_spec[i].type==OLE) search_spec[i].suffix="ole";

113

 else if(search_spec[i].type==RIFF)
search_spec[i].suffix="rif";

 audit_msg(s,"%s:=
%d",search_spec[i].suffix,search_spec[i].found);
 }
 }
}
int charactersMatch(char a, char b, int caseSensitive)
{
 //if(a==b) return 1;
 if (a == wildcard || a == b) return 1;
 if (caseSensitive || (a < 'A' || a > 'z' || b < 'A' || b > 'z')) return 0;

/* This line is equivalent to (abs(a-b)) == 'a' - 'A' */
 return (abs(a-b) == 32);
}

int memwildcardcmp(const void *s1, const void *s2, size_t n,int caseSensitive)
{
 if (n!=0)
 {
 register const unsigned char *p1 = s1, *p2 = s2;
 do
 {
 if(!charactersMatch(*p1++, *p2++, caseSensitive))
 return (*--p1 - *--p2);
 } while (--n !=0);
 }
 return(0);
}

void printx(unsigned char* buf,int start, int end)
{
 int i=0;
 for(i=start;i<end;i++)
 {
 printf("%x ",buf[i]);
 }
 printf("\n");
}

char* reverseString(char* to,char* from,int startLocation,int endLocation)
{
 int i=endLocation;
 int j=0;
 for(j=startLocation;j < endLocation;j++)
 {
 i--;
 to[j]=from[i];
 }

 return to;
}

unsigned short htos(unsigned char s[],int endian)
{

 unsigned char* bytes=(unsigned char*) malloc(sizeof(unsigned short)*sizeof(char));
 unsigned short size=0;
 char temp='x';
 bytes=memcpy(bytes,s,sizeof(short));

 if(endian==FOREMOST_BIG_ENDIAN && BYTE_ORDER==LITTLE_ENDIAN)
 {
 //printf("switching the byte order\n");
 temp=bytes[0];
 bytes[0]=bytes[1];
 bytes[1]=temp;

114

 }
 else if(endian==FOREMOST_LITTLE_ENDIAN && BYTE_ORDER==BIG_ENDIAN)
 {
 temp=bytes[0];
 bytes[0]=bytes[1];
 bytes[1]=temp;
 }
 size = *((unsigned short *)bytes);
 free(bytes);
 return size;
}

unsigned int htoi(unsigned char s[],int endian)
{

 int length=sizeof(int);
 unsigned char* bytes=(unsigned char*) malloc(length*sizeof(char));
 unsigned int size=0;

 bytes=memcpy(bytes,s,length);

 if(endian==FOREMOST_BIG_ENDIAN && BYTE_ORDER==LITTLE_ENDIAN)
 {

 bytes=reverseString(bytes,s,0,length);
 }
 else if(endian==FOREMOST_LITTLE_ENDIAN && BYTE_ORDER==BIG_ENDIAN)
 {

 bytes=reverseString(bytes,s,0,length);
 }

 size = *((unsigned int*)bytes);

 free(bytes);
 return size;
}

unsigned long long htoll(unsigned char s[],int endian)
{
 int length=sizeof(long long);
 unsigned char* bytes=(unsigned char*) malloc(length*sizeof(char));
 unsigned int size=0;
 bytes=memcpy(bytes,s,length);
 if(endian==FOREMOST_BIG_ENDIAN && BYTE_ORDER==LITTLE_ENDIAN)
 {
 bytes=reverseString(bytes,s,0,length);
 }
 else if(endian==FOREMOST_LITTLE_ENDIAN && BYTE_ORDER==BIG_ENDIAN)
 {
 bytes=reverseString(bytes,s,0,length);
 }
 size = *((unsigned long*)bytes);

 free(bytes);
 return size;
}

/* display Position: Tell the user how far through the infile we are */
int displayPosition(f_state* s,f_info *i,unsigned long long pos)
{
 int percentDone=0;
 int count;
 int factor=4;
 int multiplier=25;
 int number_of_stars=0;
 char buffer[256];

 if(i->total_bytes > 0)
 {

115

 percentDone = (((double)pos)/(double)(i->total_bytes) * 100);
 }
 else
 {
 factor=4;
 multiplier=25;
 }

 number_of_stars=percentDone/factor;

 printf("%s: |",s->input_file);
 for(count=0;count<number_of_stars;count++)
 {
 printf("*");
 }
 for(count=0;count< (multiplier-number_of_stars);count++)
 {
 printf(" ");
 }

 if(i->total_bytes > 0)
 {
 printf("|\t %d%% done\n",percentDone);
 }
 else printf("|\t %s done\n",human_readable(pos,buffer));

 return TRUE;
}

H. MAIN.C
/* FOREMOST
 *
 * By Jesse Kornblum and Kris Kendall
 *
 * This is a work of the US Government. In accordance with 17 USC 105,
 * copyright protection is not available for any work of the US Government.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Modification by Nick Mikus 2-15-05
 *
 */

#include "main.h"

#ifdef __WIN32
/* Allows us to open standard input in binary mode by default
 See http://gnuwin32.sourceforge.net/compile.html for more */
int _CRT_fmode = _O_BINARY;
#endif

void catch_alarm(int signum)
{
 signal_caught = signum;
 signal(signum,catch_alarm);
}

void register_signal_handler(void)
{
 signal_caught = 0;

 if(signal (SIGINT, catch_alarm) == SIG_IGN)
 signal (SIGINT, SIG_IGN);
 if(signal (SIGTERM,catch_alarm) == SIG_IGN)
 signal (SIGTERM, SIG_IGN);

116

#ifndef __WIN32
 /* Note: I haven't found a way to get notified of
 console resize events in Win32. Right now the statusbar
 will be too long or too short if the user decides to resize
 their console window while foremost runs.. */
 /* RBF - Handle TTY events */
 // The function setttywidth is in the old helpers.c
 // signal(SIGWINCH, setttywidth);
#endif
}

void try_msg(void)
{
 fprintf(stderr,"Try `%s -h` for more information.%s", __progname,NEWLINE);
}

/* The usage function should, at most, display 22 lines of text to fit
 on a single screen */
void usage(void)
{
 fprintf(stderr,"%s version %s by %s.%s",__progname,VERSION,AUTHOR,NEWLINE);
 fprintf(stderr,"%s %s [-v|-V|-h] [-t <type>] [-s <blocks>] [-k <size>] [-c <file>] [-o
<dir>] [-i <file] %s%s",CMD_PROMPT,__progname,NEWLINE,NEWLINE);
 fprintf(stderr,"-V - display copyright information and exit%s",NEWLINE);
 fprintf(stderr,"-t - specify format %s",NEWLINE);
 fprintf(stderr,"-i - specify input file (default is stdin) %s",NEWLINE);
 fprintf(stderr,"-o - set output directory (defaults to %s)%s",
 DEFAULT_OUTPUT_DIRECTORY,NEWLINE);
 fprintf(stderr,"-c - set configuration file to use (defaults to %s)%s",
 DEFAULT_CONFIG_FILE,NEWLINE);
 fprintf(stderr,"-q - enables quiet mode. Most error messages are supressed%s",
NEWLINE);

 /* RBF - What should verbose mode be? */
 fprintf(stderr,"-v - verbose mode. Logs all messages to screen%s", NEWLINE);
}

/*
 fprintf(stderr,"-0 - use /0 as line terminator%s", NEWLINE);
*/

void process_command_line(int argc, char **argv, f_state *s) {

 int i;

 while ((i=getopt(argc,argv,"o:b:c:t:s:i:k:hqdvVw")) != -1) {
 switch (i) {

 case 'v':
 set_mode(s,mode_verbose);
 break;
 case 'd':
 set_mode(s,mode_ind_blk);
 break;
 case 'b':
 set_block(s,atoi(optarg));
 break;
 case 'o':
 set_output_directory(s,optarg);
 break;
 case 'q':
 set_mode(s,mode_quiet);
 break;
 case 'c':
 set_config_file(s,optarg);
 break;
 case 'k':
 set_chunk(s,atoi(optarg));

117

 break;
 case 's':
 set_skip(s,atoi(optarg));
 break;
 case 'i':
 set_input_file(s,optarg);
 break;
 case 't':
 /*See if we have multiple file types to define*/
 while(1)
 {
 if(!set_search_def(s,optarg,0))
 {
 usage();
 exit (EXIT_SUCCESS);
 }
 if(argv[optind]==NULL) break;
 if(argv[optind][0]=='-') break;
 optarg=argv[optind];
 optind++;
 }
 break;
 case 'h':
 usage();
 exit (EXIT_SUCCESS);

 /* RBF - Lowercase 'v' used to be the verbose flag in older
 versions. Should we keep it as this? */
 case 'w':

 case 'V':
 printf ("%s%s",VERSION,NEWLINE);
 /* We could just say printf(COPYRIGHT), but that's a good way
 to introduce a format string vulnerability. Better to always
 use good programming practice... */
 printf ("%s", COPYRIGHT);
 exit (EXIT_SUCCESS);

 default:
 try_msg();
 exit (EXIT_FAILURE);

 }
 }

#ifdef __DEBUG
 dump_state(s);
#endif

}

int main(int argc, char **argv)
{
 f_state *s = (f_state *)malloc(sizeof(f_state));

#ifndef __GLIBC__
 __progname = basename(argv[0]);
#endif

 if (initialize_state(s,argc,argv))
 fatal_error(s,"Unable to initialize state");

 register_signal_handler();
 process_command_line(argc,argv,s);

 if (load_config_file(s)) ;
 //fatal_error(s,"Unable to load config file");

 if (create_output_directory(s))

118

 fatal_error(s,"Unable to open output directory");

 create_sub_dirs(s);

 if (open_audit_file(s))
 fatal_error(s,"Can't open audit file");

 /* Anything left on the command line at this point is a file
 we're supposed to process. If there's nothing specified,
 we should tackle standard input */

 if(s->num_builtin==0)
 {
 printf("ERROR: No search specification provided\n");
 exit(-1);
 }
#ifdef DEBUG
 print_search_specs(s);
#endif
 if (s->input_file == NULL)
 {
#ifdef DEBUG
 printf("Processing sdtin\n");
#endif
 process_stdin(s);
 }
 else
 {
 process_file(s);
 }
 audit_msg(s,"Wrote %d files\n",s->fileswritten);
 print_stats(s);

 if (close_audit_file(s))
 {
 /* Hells bells. This is bad, but really, what can we do about it?
 Let's just report the error and try to get out of here! */
 print_error(s,AUDIT_FILE_NAME,"Error closing audit file");
 }
 free_state(s);
 free(s);
 return EXIT_SUCCESS;
}

 I. MAIN.H
/* FOREMOST
 *
 * By Jesse Kornblum
 *
 * This is a work of the US Government. In accordance with 17 USC 105,
 * copyright protection is not available for any work of the US Government.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 */

//#define DEBUG 1

#ifndef __FOREMOST_H
#define __FOREMOST_H

/* Version information is defined in the Makefile */

#define AUTHOR "Jesse Kornblum, Kris Kendall, and Nick Mikus"

/* We use \r\n for newlines as this has to work on Win32. It's redundant for
 everybody else, but shouldn't cause any harm. */
#define COPYRIGHT "This program is a work of the US Government. "\
"In accordance with 17 USC 105,\r\n"\

119

"copyright protection is not available for any work of the US Government.\r\n"\
"This is free software; see the source for copying conditions. There is NO\r\n"\
"warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\r\n"

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <dirent.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <math.h>
#include <ctype.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <signal.h>

/* For va_arg */
#include <stdarg.h>

#ifdef __LINUX
#include <sys/ioctl.h>
#include <sys/mount.h>
#endif

/* RBF - Do we care about being big-endian or little endian? */
#ifdef __LINUX

#ifndef __USE_BSD
#define __USE_BSD
#endif
#include <endian.h>

#elif defined (__SOLARIS)

#define BIG_ENDIAN 4321
#define LITTLE_ENDIAN 1234

#include <sys/isa_defs.h>
#ifdef _BIG_ENDIAN
#define BYTE_ORDER BIG_ENDIAN
#else
#define BYTE_ORDER LITTLE_ENDIAN
#endif

#elif defined (__WIN32)
#include <sys/param.h>

#elif defined (__MACOSX)
#include <machine/endian.h>
#endif

#define TRUE 1
#define FALSE 0
#define ONE_MEGABYTE 1048576

/* RBF - Do we need these type definitions? */
#ifdef __SOLARIS
#define u_int32_t unsigned int
#define u_int64_t unsigned long
#endif

/* The only time we're *not* on a UNIX system is when we're on Windows */
#ifndef __WIN32
#ifndef __UNIX

120

#define __UNIX
#endif /* ifndef __UNIX */
#endif /* ifndef __WIN32 */

#ifdef __UNIX

#include <libgen.h>

/* This avoids compiler warnings on older systems */
int fseeko(FILE *stream, off_t offset, int whence);
off_t ftello(FILE *stream);

#define CMD_PROMPT "$"
#define DIR_SEPARATOR '/'
#define NEWLINE "\n"
#define LINE_LENGTH 74
#define BLANK_LINE \
" "

#endif /* #ifdef __UNIX */

/* This allows us to open standard input in binary mode by default
 See http://gnuwin32.sourceforge.net/compile.html for more */
#include <fcntl.h>

/* Code specific to Microsoft Windows */
#ifdef __WIN32

/* By default, Windows uses long for off_t. This won't do. We
 need an unsigned number at minimum. Windows doesn't have 64 bit
 numbers though. */
#ifdef off_t
#undef off_t
#endif
#define off_t unsigned long

#define CMD_PROMPT "c:\\>"
#define DIR_SEPARATOR '\\'
#define NEWLINE "\r\n"
#define LINE_LENGTH 72
#define BLANK_LINE \
" "

/* It would be nice to use 64-bit file lengths in Windows */
#define ftello ftell
#define fseeko fseek

#define snprintf _snprintf
#define u_int32_t unsigned long

/* We create macros for the Windows equivalent UNIX functions.
 No worries about lstat to stat; Windows doesn't have symbolic links */
#define lstat(A,B) stat(A,B)

#define realpath(A,B) _fullpath(B,A,PATH_MAX)

/* Not used in md5deep anymore, but left in here in case I
 ever need it again. Win32 documentation searches are evil.
 int asprintf(char **strp, const char *fmt, ...);
*/

char *basename(char *a);
extern char *optarg;
extern int optind;
int getopt(int argc, char *const argv[], const char *optstring);

#endif /* ifdef _WIN32 */

121

/* On non-glibc systems we have to manually set the __progname variable */
#ifdef __GLIBC__
extern char *__progname;
#else
char *__progname;
#endif /* ifdef __GLIBC__ */

/* ---
 Program Defaults
 --- */
#define MAX_STRING_LENGTH 1024

/* Modes refer to options that can be set by the user. */

#define mode_none 0
#define mode_verbose 1<<1
#define mode_quiet 1<<2
#define mode_ind_blk 1<<3

#define MAX_NEEDLES 254
#define NUM_SEARCH_SPEC_ELEMENTS 6
#define MAX_SUFFIX_LENGTH 8
#define MAX_FILE_TYPES 100
#define FOREMOST_NOEXTENSION_SUFFIX "NONE"
/* Modes 3 to 31 are reserved for future use. We shouldn't use
 modes higher than 31 as Win32 can't go that high. */

#define DEFAULT_MODE mode_none
#define DEFAULT_CONFIG_FILE "foremost.conf"
#define DEFAULT_OUTPUT_DIRECTORY "output"
#define AUDIT_FILE_NAME "audit.txt"
#define FOREMOST_DIVIDER "--
------------"

#define JPEG 0
#define GIF 1
#define BMP 2
#define MPG 3
#define PDF 4
#define DOC 5
#define AVI 6
#define WMV 7
#define HTM 8
#define ZIP 9
#define MOV 10
#define XLS 11
#define PPT 12
#define WPD 13
#define CPP 14
#define OLE 15
#define GZIP 16
#define RIFF 17
#define WAV 18
#define VJPEG 19
#define CONF 20

#define KILOBYTE 1024
#define MEGABYTE 1024 * KILOBYTE
#define GIGABYTE 1024 * MEGABYTE
#define TERABYTE 1024 * GIGABYTE
#define PETABYTE 1024 * TERABYTE
#define EXABYTE 1024 * PETABYTE

#define UNITS_BYTES 0
#define UNITS_KILOB 1
#define UNITS_MEGAB 2
#define UNITS_GIGAB 3
#define UNITS_TERAB 4
#define UNITS_PETAB 5
#define UNITS_EXAB 6

122

#define SEARCHTYPE_FORWARD 0
#define SEARCHTYPE_REVERSE 1
#define SEARCHTYPE_FORWARD_NEXT 2

#define FOREMOST_BIG_ENDIAN 0
#define FOREMOST_LITTLE_ENDIAN 1
/*DEFAULT CHUNK SIZE In MB*/
#define CHUNK_SIZE 100

/* Wildcard is a global variable because it's used by very simple
 functions that don't need the whole state passed to them */

/* ---
 State Variable and Global Variables
 --- */
char wildcard;
typedef struct f_state
{
 off_t mode;
 char *config_file;
 char *input_file;
 char *output_directory;
 char *start_time;
 char *invocation;
 char *audit_file_name;
 FILE *audit_file;
 int audit_file_open;
 int num_builtin;
 int chunk_size; /*IN MB*/
 int fileswritten;
 int block_size;
 int skip;

} f_state;

typedef struct marker
{
 char* value;
 int len;
 size_t marker_bm_table[UCHAR_MAX+1];
}marker;

typedef struct s_spec
{
 char* suffix;
 int type;
 unsigned long long max_len;

 char* header;
 unsigned int header_len;
 size_t header_bm_table[UCHAR_MAX+1];

 char* footer;
 unsigned int footer_len;
 size_t footer_bm_table[UCHAR_MAX+1];
 marker markerlist[5];
 int num_markers;
 int searchtype;

 int case_sen;

 int found;
}s_spec;

s_spec search_spec[50]; /*ARRAY OF BUILTIN SEARCH TYPES*/

typedef struct f_info {
 char *file_name;
 off_t total_bytes;

123

 /* We never use the total number of bytes in a file,
 only the number of megabytes when we display a time estimate */
 off_t total_megs;
 off_t bytes_read;

#ifdef __WIN32
 /* Win32 is a 32-bit operating system and can't handle file sizes
 larger than 4GB. We use this to keep track of overflows */
 off_t last_read;
 off_t overflow_count;
#endif

 FILE *handle;
 int is_stdin;
} f_info;

/* Set if the user hits ctrl-c */
int signal_caught;

/* ---
 Function definitions
 --- */

/* State functions */

int initialize_state(f_state *s, int argc, char **argv);
void free_state(f_state *s);

char *get_invocation(f_state *s);
char *get_start_time(f_state *s);

int set_config_file(f_state *s, char *fn);
char* get_config_file(f_state *s);

int set_output_directory(f_state *s, char *fn);
char* get_output_directory(f_state *s);

void set_audit_file_open(f_state *s);
int get_audit_file_open(f_state *s);

void set_mode(f_state *s, off_t new_mode);
int get_mode(f_state *s, off_t check_mode);

int set_search_def(f_state *s,char* ft,unsigned long long max_file_size);
void get_search_def(f_state s);

void set_input_file(f_state *s,char* filename);
void get_input_file(f_state *s);

void set_chunk(f_state *s, int size);

void init_bm_table(char *needle, size_t table[UCHAR_MAX + 1], size_t len, int
casesensitive,int searchtype);

void set_skip(f_state *s, int size);
void set_block(f_state *s, int size);

#ifdef __DEBUG
void dump_state(f_state *s);
#endif

/* The audit file */
int open_audit_file(f_state *s);
void audit_msg(f_state *s, char *format, ...);
int close_audit_file(f_state *s);

/* Set up our output directory */
int create_output_directory(f_state *s);

124

int writeToDisk(f_state *s,s_spec * needle,unsigned long long len,unsigned char* buf,
unsigned long long
 t_offset);
int create_sub_dirs(f_state *s);

/* Configuration Files */
int load_config_file(f_state *s);

/* Helper functions */
char *current_time(void);
off_t find_file_size(FILE *f);
char *human_readable(off_t size, char *buffer);
char *units(unsigned int c);
unsigned int chop(char *buf);
void print_search_specs(f_state *s);
int memwildcardcmp(const void *s1, const void *s2,size_t n,int caseSensitive);
int charactersMatch(char a, char b, int caseSensitive);
void printx(unsigned char* buf,int start, int end);
unsigned short htos(unsigned char s[],int endian);
unsigned int htoi(unsigned char s[],int endian);
unsigned long long htoll(unsigned char s[],int endian);
int displayPosition(f_state* s,f_info* i,unsigned long long pos);

/* Interface functions
 These functions stay the same regardless if we're using a
 command line interface or a GUI */
void fatal_error(f_state *s, char *msg);
void print_error(f_state *s, char *fn, char *msg);
void print_message(f_state *s, char *format, va_list argp);
void print_stats(f_state *s);

/* Engine */
int process_file(f_state *s);
int process_stdin(f_state *s);
unsigned char *bm_search(char *needle, size_t needle_len,unsigned char *haystack, size_t
haystack_len,
 size_t table[UCHAR_MAX + 1], int case_sen,int searchtype);
unsigned char *bm_search_skipn(char *needle, size_t needle_len,unsigned char *haystack,
size_t haystack_len,
 size_t table[UCHAR_MAX + 1], int casesensitive,int searchtype, int start_pos) ;
#endif /* __FOREMOST_H */

/* BUILTIN */
char* extractFile(f_state *s, unsigned long long c_offset,char *foundat, unsigned long
long buflen, s_spec * needle,unsigned long long f_offset);

J. CONFIG.C
#include "main.h"

int translate(char *str)
{
 char next;
 char *rd=str,*wr=str,*bad;
 char temp[1+3+1];
 char ch;

 if(!*rd) //If it's a null string just return
 {
 return 0;
 }

 while (*rd)
 {
/* Is it an escaped character ? */
 if (*rd=='\\')
 {
 rd++;

125

 switch(*rd)
 {
 case '\\':
 *rd++;
 *wr++='\\';
 break;
 case 'a':
 *rd++;
 *wr++='\a';
 break;
 case 's':
 *rd++;
 *wr++=' ';
 break;
 case 'n':
 *rd++;
 *wr++='\n';
 break;
 case 'r':
 *rd++;
 *wr++='\r';
 break;
 case 't':
 *rd++;
 *wr++='\t';
 break;
 case 'v':
 *rd++;
 *wr++='\v';
 break;
/* Hexadecimal/Octal values are treated in one place using strtoul() */
 case 'x':
 case '0': case '1': case '2': case '3':
 next = *(rd+1);
 if (next < 48 || (57 < next && next < 65) ||
 (70 < next && next < 97) || next > 102)
 break; //break if not a digit or a-f, A-F
 next = *(rd+2);
 if (next < 48 || (57 < next && next < 65) ||
 (70 < next && next < 97) || next > 102)
 break; //break if not a digit or a-f, A-F

 temp[0]='0'; bad=temp;
 strncpy(temp+1,rd,3);
 temp[4] = '\0';
 ch=strtoul(temp,&bad,0);
 if (*bad=='\0')
 {
 *wr++=ch;
 rd+=3;
 } /* else INVALID CHARACTER IN INPUT
('\\' followed by *rd) */
 break;
 default: /* INVALID CHARACTER IN INPUT (*rd)*/
 *wr++='\\';
 break;
 }
 }
/* Unescaped characters go directly to the output */
 else *wr++=*rd++;
 }
 *wr = '\0'; //Null terminate the string that we
just created...
 return wr-str;
}

char* skipWhiteSpace(char* str)
{
 while (isspace(str[0]))
 str++;

126

 return str;
}

int extractSearchSpecData(f_state *state,char **tokenarray)
{

/* Process a normal line with 3-4 tokens on it
 token[0] = suffix
 token[1] = case sensitive
 token[2] = size to snarf
 token[3] = begintag
 token[4] = endtag (optional)
 token[5] = search for footer from back of buffer flag and other options (whew!)
*/

/* Allocate the memory for these lines.... */

s_spec *s=&search_spec[state->num_builtin];

 s->suffix = malloc(MAX_SUFFIX_LENGTH*sizeof(char));
 s->header = malloc(MAX_STRING_LENGTH*sizeof(char));
 s->footer = malloc(MAX_STRING_LENGTH*sizeof(char));
 s->type= CONF;
 if (!strncasecmp(tokenarray[0],
 FOREMOST_NOEXTENSION_SUFFIX,
 strlen(FOREMOST_NOEXTENSION_SUFFIX)))
 {
 s->suffix[0] = ' ';
 s->suffix[1] = 0;
 }
 else
 {

/* Assign the current line to the SearchSpec object */
 memcpy(s->suffix,tokenarray[0],MAX_SUFFIX_LENGTH);
 }

/* Check for case sensitivity */
 s->case_sen = (!strncasecmp(tokenarray[1],"y",1) ||
 !strncasecmp(tokenarray[1],"yes",3));

 s->max_len = atoi(tokenarray[2]);

/* Determine which search type we want to use for this needle */
 s->searchtype = SEARCHTYPE_FORWARD;
 if (!strncasecmp(tokenarray[5],"REVERSE",strlen("REVERSE")))
 {

 s->searchtype = SEARCHTYPE_REVERSE;
 }
 else if (!strncasecmp(tokenarray[5],"NEXT",strlen("NEXT")))
 {
 s->searchtype = SEARCHTYPE_FORWARD_NEXT;
 }
// this is the default, but just if someone wants to provide this value just to be sure
 else if (!strncasecmp(tokenarray[5],"FORWARD",strlen("FORWARD")))
 {
 s->searchtype = SEARCHTYPE_FORWARD;
 }

/* Done determining searchtype */

/* We copy the tokens and translate them from the file format.
 The translate() function does the translation and returns
 the length of the argument being translated */

 s->header_len = translate(tokenarray[3]);
 memcpy(s->header,tokenarray[3],s->header_len);
 s->footer_len = translate(tokenarray[4]);
 memcpy(s->footer,tokenarray[4],s->footer_len);

127

 init_bm_table(s->header,s->header_bm_table,s->header_len, s->case_sen,s->searchtype);
 init_bm_table(s->footer,s->footer_bm_table,s->footer_len,s->case_sen,s->searchtype);

 return TRUE;
}

int process_line(f_state *s, char *buffer, int line_number)
{

 char* buf = buffer;
 char* token;
 char** tokenarray = (char **) malloc(6*sizeof(char[MAX_STRING_LENGTH]));
 int i = 0, len = strlen(buffer);

/* Any line that ends with a CTRL-M (0x0d) has been processed
 by a DOS editor. We will chop the CTRL-M to ignore it */
 if (buffer[len-2] == 0x0d && buffer[len-1] == 0x0a)
 {
 buffer[len-2] = buffer[len-1];
 buffer[len-1] = buffer[len];
 }

 buf = (char*) skipWhiteSpace(buf);
 token = strtok(buf," \t\n");
//printf("processing line.5\n");
/* Any line that starts with a '#' is a comment and can be skipped */
 if(token == NULL || token[0] == '#')
 {
 return TRUE;
 }
//printf("processing line1\n");
/* Check for the wildcard */
 if (!strncasecmp(token,"wildcard",9))
 {
 if ((token = strtok(NULL," \t\n")) != NULL)
 {
 translate(token);
 }
 else
 {
 return TRUE;
 }

 if (strlen(token) > 1)
 {
 fprintf(stderr,"Warning: Wildcard can only be one character,"
 " but you specified %d characters.\n"
 " Using the first character, \"%c\", as the wildcard.\n",
 strlen(token),token[0]);
 }

 wildcard = token[0];
 return TRUE;
 }
//printf("processing line2\n");
 while (token && (i < NUM_SEARCH_SPEC_ELEMENTS))
 {
 tokenarray[i] = token;
 i++;
 token = strtok(NULL," \t\n");
 }
//printf("processing line3\n");
 switch(NUM_SEARCH_SPEC_ELEMENTS-i)
 {
 case 2:
 tokenarray[NUM_SEARCH_SPEC_ELEMENTS-1] = "";
 tokenarray[NUM_SEARCH_SPEC_ELEMENTS-2] = "";
 break;
 case 1:

128

 tokenarray[NUM_SEARCH_SPEC_ELEMENTS-1] = "";
 break;
 case 0:
 break;
 default:
 fprintf(stderr,"\nERROR: In line %d of the configuration
file.\n",line_number);
 return FALSE;
 return TRUE;

 }

//printf("processing line4\n");
 if(!extractSearchSpecData(s,tokenarray))
 {
 fprintf(stderr,
 "\nERROR: Unknown error on line %d of the configuration
file.\n",line_number);
 }
 s->num_builtin++;

 return TRUE;
}

int load_config_file(f_state *s)
{
 FILE *f;
 char* buffer = (char *)malloc(MAX_STRING_LENGTH * sizeof(char));
 off_t line_number = 0;

#ifdef __DEBUG
 printf ("About to open config file %s%s", get_config_file(s), NEWLINE);
#endif

 if ((f = fopen(get_config_file(s),"r")) == NULL)
 {

 set_config_file(s,"/etc/foremost.conf");
 if ((f = fopen(get_config_file(s),"r")) == NULL)
 {
 print_error(s,get_config_file(s),strerror(errno));
 free(buffer);
 return TRUE;
 }

 }

 while (fgets(buffer,MAX_STRING_LENGTH,f))
 {
 ++line_number;
 if (!process_line(s,buffer,line_number))
 {
 free(buffer);
 fclose(f);
 return TRUE;

 }
 }

 fclose(f);
 free(buffer);
 return FALSE;
}

K. STATE.C
#include "main.h"

129

int initialize_state(f_state *s, int argc, char **argv)
{
 char **argv_copy = argv;

 /* The routines in current_time return statically allocated memory.
 We strdup the result so that we don't accidently free() the wrong
 thing later on. */
 s->start_time = strdup(current_time());
 wildcard='?';
 s->audit_file_open = FALSE;
 s->mode = DEFAULT_MODE;
 s->input_file=NULL;
 s->fileswritten=0;
 s->block_size=512;
 /* We use the setter fuctions here to call realpath */
 set_config_file(s,DEFAULT_CONFIG_FILE);
 set_output_directory(s,DEFAULT_OUTPUT_DIRECTORY);

 s->invocation = (char *)malloc(sizeof(char) * MAX_STRING_LENGTH);
 s->invocation[0] = 0;
 s->chunk_size=CHUNK_SIZE;
 s->num_builtin=0;
 s->skip=0;
 do
 {
 strncat(s->invocation,*argv_copy,MAX_STRING_LENGTH-strlen(s->invocation));
 strncat(s->invocation," ",MAX_STRING_LENGTH-strlen(s->invocation));
 ++argv_copy;
 } while (*argv_copy);

 return FALSE;
}

void free_state(f_state *s)
{
 free(s->start_time);
 free(s->output_directory);
 free(s->config_file);
}

int get_audit_file_open(f_state *s)
{
 return (s->audit_file_open);
}

char *get_invocation(f_state *s)
{
 return (s->invocation);
}

char *get_start_time(f_state *s)
{
 return (s->start_time);
}

char* get_config_file(f_state *s)
{
 return (s->config_file);
}

int set_config_file(f_state *s, char *fn)
{
 char temp[PATH_MAX];
 /* If the configuration file doesn't exist, this realpath will return
 NULL. We don't error check here as the user may specify a file
 that doesn't currently exist */

130

 realpath(fn,temp);

 /* RBF - Does this create a memory leak? What happens to the old value? */
 s->config_file = strdup(temp);
 return FALSE;
}

char* get_output_directory(f_state *s)
{
 return (s->output_directory);
}

int set_output_directory(f_state *s, char *fn)
{
 char temp[PATH_MAX];
 /* We don't error check here as it's quite possible that the
 output directory doesn't exist yet. If it doesn't, realpath
 resolves the path correctly, but still returns NULL. */
 realpath(fn,temp);

 /* RBF - Does this create a memory leak? What happens to the old value? */
 s->output_directory = strdup(temp);
 return FALSE;
}

int get_mode(f_state *s, off_t check_mode)
{
 return (s->mode & check_mode);
}

void set_mode(f_state *s, off_t new_mode)
{
 s->mode |= new_mode;
}
void set_chunk(f_state *s, int size)
{
 s->chunk_size = size;
}
void set_skip(f_state *s, int size)
{
 s->skip = size;
}
void set_block(f_state *s, int size)
{
 s->block_size = size;
}

void write_audit_header(f_state *s)
{
 audit_msg(s,"Foremost version %s by %s",VERSION,AUTHOR);
 audit_msg(s,"Audit File");
 audit_msg(s,"");
 audit_msg(s,"Foremost started at %s", get_start_time(s));
 audit_msg(s,"Invocation: %s", get_invocation(s));
 audit_msg(s,"Output directory: %s", get_output_directory(s));
 audit_msg(s,"Configuration file: %s", get_config_file(s));
}

int open_audit_file(f_state *s)
{
 char fn[MAX_STRING_LENGTH];

 snprintf (fn,MAX_STRING_LENGTH,"%s%c%s",
 get_output_directory(s),DIR_SEPARATOR,AUDIT_FILE_NAME);

 if ((s->audit_file = fopen(fn,"w")) == NULL)
 {
 print_error(s,fn,strerror(errno));
 fatal_error(s,"Can't open audit file");

131

 }

 s->audit_file_open = TRUE;
 write_audit_header(s);

 return FALSE;
}

int close_audit_file(f_state *s)
{
 printf("Closing the audit file\n");
 audit_msg(s,FOREMOST_DIVIDER);
 audit_msg(s,"");
 audit_msg(s,"Foremost finished at %s", current_time());

 if (fclose(s->audit_file))
 {
 print_error(s,AUDIT_FILE_NAME,strerror(errno));
 return TRUE;
 }

 return FALSE;
}

void audit_msg(f_state *s, char *format, ...)
{
 va_list argp;
 va_start(argp,format);

 if (get_mode(s,mode_verbose))
 print_message(s,format,argp);

 vfprintf (s->audit_file,format,argp);
 va_end(argp);

 fprintf(s->audit_file,"%s",NEWLINE);
}

void set_input_file(f_state *s,char* filename)
{
 s->input_file=(char *) malloc((strlen(filename)+1)*sizeof(char));
 strncpy(s->input_file,filename,strlen(filename)+1);
}

int initBuiltin(f_state *s,int type,char* suffix, char* header,char* footer,int
header_len,int
 footer_len,unsigned long long max_len ,int case_sen)
{

 int i=s->num_builtin;

 search_spec[i].type=type;
 search_spec[i].suffix =(char *) malloc(strlen(suffix)*sizeof(char));
 search_spec[i].num_markers=0;
 strcpy(search_spec[i].suffix,suffix);

 search_spec[i].header_len=header_len;
 search_spec[i].footer_len=footer_len;

 search_spec[i].max_len=max_len;
 search_spec[i].found=0;
 search_spec[i].header = (char *) malloc(search_spec[i].header_len*sizeof(char));
 search_spec[i].footer = (char *) malloc(search_spec[i].footer_len*sizeof(char));
 search_spec[i].case_sen=case_sen;

 memcpy(search_spec[i].header,header,search_spec[i].header_len);
 memcpy(search_spec[i].footer,footer,search_spec[i].footer_len);

132

init_bm_table(search_spec[i].header,search_spec[i].header_bm_table,search_spec[i].header_
len,search_spec[i].case_sen,SEARCHTYPE_FORWARD);

init_bm_table(search_spec[i].footer,search_spec[i].footer_bm_table,search_spec[i].footer_
len,search_spec[i].case_sen,SEARCHTYPE_FORWARD);
 s->num_builtin++;

 return i;
}
void addMarker(f_state *s,int index,char* marker,int markerlength)
{
 int i=search_spec[index].num_markers;
 if(marker==NULL)
 {
 search_spec[index].num_markers=0;
 return;
 }
 search_spec[index].markerlist[i].len=markerlength;
 search_spec[index].markerlist[i].value = (char*)
malloc(search_spec[index].markerlist[i].len*sizeof(char));

 memcpy(search_spec[index].markerlist[i].value,marker,search_spec[index].markerli
st[i].len);

 init_bm_table(search_spec[index].markerlist[i].value,search_spec[index].markerli
st[i].marker_bm_table,search_spec[index].markerlist[i].len,TRUE,SEARCHTYPE_FORWARD);
 search_spec[index].num_markers++;
}
void initAll(f_state *state)
{
 int index=0;
 initBuiltin(state,JPEG,"jpg","\xff\xd8\xff","\xff\xd9",3,2,2*MEGABYTE,TRUE);
 initBuiltin(state,GIF,"gif","\x47\x49\x46\x38","\x00\x3b",4,2,MEGABYTE,TRUE);
 initBuiltin(state,BMP,"bmp","BM",NULL,2,0,2*MEGABYTE,TRUE);
 initBuiltin(state,WMV,"wmv","\x30\x26\xB2\x75\x8E\x66\xCF\x11","\xA1\xDC\xAB\x8C
\x47\xA9",8,6,40*MEGABYTE,TRUE);
 initBuiltin(state,MOV,"mov","moov",NULL,4,0,40*MEGABYTE,TRUE);
 initBuiltin(state,RIFF,"rif","RIFF","INFO",4,4,20*MEGABYTE,TRUE);
 initBuiltin(state,HTM,"htm","<html","</html>",5,7,MEGABYTE,FALSE);
 initBuiltin(state,OLE,"ole","\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00\x00\x00\x0
0\x00\x00\x00",NULL,16,0,5*MEGABYTE,TRUE);
 initBuiltin(state,ZIP,"zip","\x50\x4B\x03\x04","\x4b\x05\x06\x00",4,4,100*MEGABY
TE,TRUE);

index=initBuiltin(state,MPG,"mpg","\x00\x00\x01\xba","\x00\x00\x01\xb9",4,4,50*MEGABYTE,T
RUE);
 addMarker(state,index,"\x00\x00\x01",3);

 index=initBuiltin(state,PDF,"pdf","%PDF-1.","%%EOF",7,5,40*MEGABYTE,TRUE);
 addMarker(state,index,"/L ",3);
 addMarker(state,index,"obj",3);
 addMarker(state,index,"/Linearized",11);
 addMarker(state,index,"/Length",7);
}

int set_search_def(f_state *s,char* ft,unsigned long long max_file_size)
{
 int index=0;

 if(strcmp(ft,"jpg")==0 || strcmp(ft,"jpeg")==0)
 {
 if(max_file_size==0) max_file_size=2*MEGABYTE;
 initBuiltin(s,JPEG,"jpg","\xff\xd8\xff","\xff\xd9",3,2,max_file_size,TRUE);
 }
 else if(strcmp(ft,"gif")==0)
 {
 if(max_file_size==0) max_file_size=1*MEGABYTE;

133

initBuiltin(s,GIF,"gif","\x47\x49\x46\x38","\x00\x3b",4,2,max_file_size,TRUE);
 }
 else if(strcmp(ft,"bmp")==0)
 {

 if(max_file_size==0) max_file_size=2*MEGABYTE;

 initBuiltin(s,BMP,"bmp","BM",NULL,2,0,max_file_size,TRUE);
 }
 else if(strcmp(ft,"mpg")==0 || strcmp(ft,"mpeg")==0)
 {
 if(max_file_size==0) max_file_size=50*MEGABYTE;
 //20000000 \x00\x00\x01\xb3 \x00\x00\x01\xb7 //system data

index=initBuiltin(s,MPG,"mpg","\x00\x00\x01\xba","\x00\x00\x01\xb9",4,4,max_file_size,TRU
E);
 addMarker(s,index,"\x00\x00\x01",3);
 /*
 addMarker(s,index,"\x00\x00\x01\xBB",4);
 addMarker(s,index,"\x00\x00\x01\xBE",4);
 addMarker(s,index,"\x00\x00\x01\xB3",4);
 */
 }
 else if(strcmp(ft,"wmv")==0)
 {

 if(max_file_size==0) max_file_size=20*MEGABYTE;

initBuiltin(s,WMV,"wmv","\x30\x26\xB2\x75\x8E\x66\xCF\x11","\xA1\xDC\xAB\x8C\x47\xA9",8,6
,max_file_size,TRUE);
 }
 else if(strcmp(ft,"avi")==0)
 {

 if(max_file_size==0) max_file_size=20*MEGABYTE;

 initBuiltin(s,AVI,"avi","RIFF","INFO",4,4,max_file_size,TRUE);
 }

 else if(strcmp(ft,"riff")==0)
 {

 if(max_file_size==0) max_file_size=20*MEGABYTE;
 initBuiltin(s,RIFF,"rif","RIFF","INFO",4,4,max_file_size,TRUE);
 }
 else if(strcmp(ft,"wav")==0)
 {

 if(max_file_size==0) max_file_size=20*MEGABYTE;
 initBuiltin(s,WAV,"wav","RIFF","INFO",4,4,max_file_size,TRUE);

 }
 else if(strcmp(ft,"html")==0 || strcmp(ft,"htm")==0)
 {

 if(max_file_size==0) max_file_size=1*MEGABYTE;
 initBuiltin(s,HTM,"htm","<html","</html>",5,7,max_file_size,FALSE);
 }

 else if(strcmp(ft,"ole")==0 || strcmp(ft,"office")==0)
 {

 if(max_file_size==0) max_file_size=10*MEGABYTE;

initBuiltin(s,OLE,"ole","\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00\x00\x00\x00\x00\x00\x00
",NULL,16,0,max_file_size,TRUE);
 }
 else if(strcmp(ft,"doc")==0)
 {

134

 if(max_file_size==0) max_file_size=20*MEGABYTE;

initBuiltin(s,DOC,"doc","\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00\x00\x00\x00\x00\x00\x00
",NULL,16,0,max_file_size,TRUE);
 }
 else if(strcmp(ft,"xls")==0)
 {
 if(max_file_size==0) max_file_size=10*MEGABYTE;

initBuiltin(s,XLS,"xls","\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00\x00\x00\x00\x00\x00\x00
",NULL,16,0,max_file_size,TRUE);

 }
 else if(strcmp(ft,"ppt")==0)
 {

 if(max_file_size==0) max_file_size=10*MEGABYTE;

initBuiltin(s,PPT,"ppt","\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00\x00\x00\x00\x00\x00\x00
",NULL,16,0,max_file_size,TRUE);
 }
 else if(strcmp(ft,"zip")==0 || strcmp(ft,"jar")==0)
 {
 if(max_file_size==0) max_file_size=100*MEGABYTE;

initBuiltin(s,ZIP,"zip","\x50\x4B\x03\x04","\x4b\x05\x06\x00",4,4,max_file_size,TRUE);

 }
 else if(strcmp(ft,"gzip")==0 || strcmp(ft,"gz")==0)
 {
 if(max_file_size==0) max_file_size=100*MEGABYTE;

initBuiltin(s,GZIP,"gz","\x1F\x8B","\x00\x00\x00\x00",2,4,max_file_size,TRUE);
 }
 else if(strcmp(ft,"pdf")==0)
 {
 if(max_file_size==0) max_file_size=20*MEGABYTE;

 index=initBuiltin(s,PDF,"pdf","%PDF-1.","%%EOF",7,5,max_file_size,TRUE);
 addMarker(s,index,"/L ",3);
 addMarker(s,index,"obj",3);
 addMarker(s,index,"/Linearized",11);
 addMarker(s,index,"/Length",7);
 }
 else if(strcmp(ft,"vjpeg")==0)
 {
 if(max_file_size==0) max_file_size=40*MEGABYTE;
 initBuiltin(s,VJPEG,"mov","pnot",NULL,4,0,max_file_size,TRUE);
 }
 else if(strcmp(ft,"mov")==0)
 {
 if(max_file_size==0) max_file_size=40*MEGABYTE;

 initBuiltin(s,MOV,"mov","moov",NULL,4,0,max_file_size,TRUE);
 }
 else if(strcmp(ft,"wpd")==0)
 {
 if(max_file_size==0) max_file_size=1*MEGABYTE;

 initBuiltin(s,WPD,"wpd","\xff\x57\x50\x43",NULL,4,0,max_file_size,TRUE);
 }
 else if(strcmp(ft,"cpp")==0)
 {
 if(max_file_size==0) max_file_size=1*MEGABYTE;

 index=initBuiltin(s,CPP,"cpp","#include","char",8,4,max_file_size,TRUE);
 addMarker(s,index,"int",3);
 }

135

 else if(strcmp(ft,"all")==0)
 {
 initAll(s);
 }
 else
 {
 return FALSE;
 }
 return TRUE;

}

void init_bm_table(char *needle, size_t table[UCHAR_MAX + 1], size_t len, int
casesensitive,int searchtype)
{
 size_t i=0,j=0,currentindex=0;

 for (i = 0; i <= UCHAR_MAX; i++)
 table[i] = len;
 for (i = 0; i < len; i++)
 {
 if(searchtype == SEARCHTYPE_REVERSE)
 {

 currentindex = i; //If we are running our searches
backwards
//we count from the beginning of the string
 }
 else
 {
 currentindex = len-i-1; //Count from the back of string
 }

 if(needle[i] == wildcard) //No skip entry can advance us past the
last wildcard in the string
 {
 for(j=0; j<=UCHAR_MAX; j++)
 table[j] = currentindex;
 }
 table[(unsigned char)needle[i]] = currentindex;
 if (!casesensitive)
 {
//RBF - this is a little kludgy but it works and this isn't the part
//of the code we really need to worry about optimizing...
//If we aren't case sensitive we just set both the upper and lower case
//entries in the jump table.
 table[tolower(needle[i])] = currentindex;
 table[toupper(needle[i])] = currentindex;
 }
 }
}

#ifdef __DEBUG
void dump_state(f_state *s)
{
 printf ("Current state:\n");
 printf ("Config file: %s\n", s->config_file);
 printf ("Output directory: %s\n", s->output_directory);
 printf ("Mode: %llu\n", s->mode);

}
#endif

L. CLI.C
#include "main.h"

void fatal_error(f_state *s, char *msg)
{

136

 fprintf(stderr,"%s: %s%s", __progname, msg, NEWLINE);
 if (get_audit_file_open(s))
 {
 audit_msg(s,msg);
 close_audit_file(s);
 }
 exit(EXIT_FAILURE);
}

void print_error(f_state *s, char *fn, char *msg)
{
 if (!(get_mode(s,mode_quiet)))
 fprintf (stderr,"%s: %s: %s%s", __progname,fn,msg,NEWLINE);
}

void print_message(f_state *s, char *format, va_list argp)
{
 vfprintf(stdout,format,argp);
 fprintf(stdout,"%s", NEWLINE);
}

M. FOREMOST.CONF

Foremost configuration file
#---

The configuration file is used to control what types of files foremost
searches for. A sample configuration file, foremost.conf, is included with
this distribution. For each file type, the configuration file describes
the file's extension, whether the header and footer are case sensitive,
the maximum file size, and the header and footer for the file. The footer
field is optional, but header, size, case sensitivity, and extension are
not!

Any line that begins with a '#' is considered a comment and ignored. Thus,
to skip a file type just put a '#' at the beginning of that line

Headers and footers are decoded before use. To specify a value in
hexadecimal use \x[0-f][0-f], and for octal use \[0-3][0-7][0-7]. Spaces
can be represented by \s. Example: "\x4F\123\I\sCCI" decodes to "OSI CCI".

To match any single character (aka a wildcard) use a '?'. If you need to
search for the '?' character, you will need to change the 'wildcard' line
and every occurrence of the old wildcard character in the configuration
file. Don't forget those hex and octal values! '?' is equal to 0x3f and
\063.

If you would like to extract files without an extension enter the value
"NONE" in the extension column (note: you can change the value of this
"no suffix" flag by setting the variable FOREMOST_NOEXTENSION_SUFFIX
in foremost.h and recompiling).

The REVERSE keyword after a footer instructs foremost to search backwards
starting from [size] bytes in the extraction buffer and working towards the
beginning. This is useful for files like PDF's that have multiple copies of
the footer throughout the file. When using the REVERSE keyword you will
extract bytes from the header to the LAST occurence of your footer within the
window determined by the [size] of your extraction.

The NEXT keyword after a footer instructs foremost to search forwards for data
that starts with the header provided and terminates or is followed by data in
the footer -- the footer data is not included in the output. The data in the
footer, when used with the NEXT keyword effectively allows you to search for

137

data that you know for sure should not be in the output file. This method for
example, lets you search for two 'starting' headers in a document that doesn't
have a good ending footer and you can't say exactly what the footer is, but
you know if you see another header, that should end the search and an output
file should be written.

To redefine the wildcard character, change the setting below and all
occurances in the formost.conf file.

#wildcard ?

case size header footer
#extension sensitive

#---
EXAMPLE WITH NO SUFFIX
#---

Here is an example of how to use the no extension option. Any files
containing the string "FOREMOST" would be extracted to a file without
an extension (eg: 00000000,00000001)
NONE y 1000 FOREMOST

#---
GRAPHICS FILES
#---

AOL ART files
art y 150000 \x4a\x47\x04\x0e \xcf\xc7\xcb
art y 150000 \x4a\x47\x03\x0e \xd0\xcb\x00\x00

GIF and JPG files (very common)
gif y 155000000 \x47\x49\x46\x38\x37\x61 \x00\x3b
gif y 155000000 \x47\x49\x46\x38\x39\x61 \x00\x00\x3b
jpg y 20000000 \xff\xd8\xff\xe0\x00\x10 \xff\xd9
jpg y 20000000 \xff\xd8\xff\xe1 \xff\xd9
jpg y 20000000 \xff\xd8\xff\xe? \xff\xd9

jpg y 20000000 \xff\xd8 \xff\xd9

PNG (used in web pages)
png y 200000 \x50\x4e\x47? \xff\xfc\xfd\xfe

BMP (used by MSWindows, use only if you have reason to think there are
BMP files worth digging for. This often kicks back a lot of false
positives

bmp y 100000 BM??\x00\x00\x00

TIF
tif y 200000000 \x49\x49\x2a\x00

#---
ANIMATION FILES
#---

AVI (Windows animation and DiVX/MPEG-4 movies)
avi y 4000000 RIFF????AVI

Apple Quicktime
Some users have reported that when using these headers that the
headers repeat inside the files. This can generate lots of smaller
output files. You may want to consider using the -q (quick mode)
flag to avoid this problem.

mov y 4000000 ????????\x6d\x6f\x6f\x76
mov y 4000000 ????????\x6d\x64\x61\x74

MPEG Video

138

mpg y 4000000 mpg eof
mpg y 20000000 \x00\x00\x01\xba \x00\x00\x01\xb9
mpg y 20000000 \x00\x00\x01\xb3 \x00\x00\x01\xb7

Macromedia Flash
fws y 4000000 FWS

#---
MICROSOFT OFFICE
#---

Word documents

look for begin tag and then wait until the next one (NEXT TAG) -- usually word
documents
and other Ole2 structured storage files are 'near' each other. Just make the file
size large enough to catch our maximium size file. Look in the audit file to see if
any were chopped.

doc y 12500000 \xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00
\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00 NEXT
doc y 12500000 \xd0\xcf\x11\xe0\xa1\xb1

Outlook files
pst y 400000000 \x21\x42\x4e\xa5\x6f\xb5\xa6
ost y 400000000 \x21\x42\x44\x4e

Outlook Express
dbx y 4000000 \xcf\xad\x12\xfe\xc5\xfd\x74\x6f
idx y 4000000 \x4a\x4d\x46\x39
mbx y 4000000 \x4a\x4d\x46\x36

#---
WORDPERFECT
#---

wpc y 100000 ?WPC

#---
HTML
#---

htm n 50000 <html </html>

#---
ADOBE PDF
#---

pdf y 5000000 %PDF- %EOF

#---
AOL (AMERICA ONLINE)
#---

AOL Mailbox
mail y 500000 \x41\x4f\x4c\x56\x4d

#---
PGP (PRETTY GOOD PRIVACY)
#---

PGP Disk Files
pgd y 500000 \x50\x47\x50\x64\x4d\x41\x49\x4e\x60\x01

Public Key Ring
pgp y 100000 \x99\x00
Security Ring
pgp y 100000 \x95\x01

139

pgp y 100000 \x95\x00
Encrypted Data or ASCII armored keys
pgp y 100000 \xa6\x00
(there should be a trailer for this...)
txt y 100000 -----BEGIN\040PGP

#---
RPM (Linux package format)
#---
rpm y 1000000 \xed\xab

#---
SOUND FILES
#---

wav y 200000 RIFF????WAVE

Real Audio Files
ra y 1000000 \x2e\x72\x61\xfd
ra y 1000000 .RMF

#---
WINDOWS REGISTRY FILES
#---

Windows NT registry
dat y 4000000 regf
Windows 95 registry
dat y 4000000 CREG

#---
MISCELLANEOUS
#---

zip y 10000000 PK\x03\x04 \x3c\xac

java y 1000000 \xca\xfe\xba\xbe

#---
ScanSoft PaperPort "Max" files
#---
max y 1000000 \x56\x69\x47\x46\x6b\x1a\x00\x00\x00\x00
\x00\x00\x05\x80\x00\x00
#---
PINs Password Manager program
#---
pins y 8000 \x50\x49\x4e\x53\x20\x34\x2e\x32\x30\x0d

140

THIS PAGE INTENTIONALLY LEFT BLANK

141

LIST OF REFERENCES

[1] RCFL Program Annual Report for Fiscal Year 2003.

[2] Prosise, Chris,and Mandia, Kevin, and Pepe, Matt. Incident Response and

Computer Forensics, Second Edition McGraw-Hill Osborne Media, 17
July 2003.

 [3] IRS Criminal Investigation Electronic Crimes Program. “ILOOK
 Investigator Toolset”. http://www.ilook-forensics.org/. 2005. Last Visited:
 March 2005.

 [4] Access Data. “Forensic Toolkit”. http://www.accessdata.com/. 2005.
 Last Visited: March 2005.

 [5] Guidance Software. “Encase”. http://www.guidancesoftware.com/. 2005.
 Last Visited: March 2005.

[6] UNIX Man Pages, “FILE”. Last visited: March 2005.

[7] UNIX Man Pages, “STAT(2)”. Last visited: March 2005.

 [8] Digital Imaging Group, “DIG2000 file format proposal”, Appendix A,
 October 1998.

 [9] The Chicago Project: http://chicago.sourceforge.net/,
 2002. Last visited: January 2005.

 [10] Sun Microsystems. “OpenOffice”. http://www.openoffice.org/. 2005
 Last Visited: March 2005.

 [11] Adobe Systems Incorporated, “Portable Document Format Reference
 Manual Version 1.3”, 11 March 1999.

[12] Kornblum, Jesse and Kendall, Kris. “Foremost 0.69”,
 http://foremost.sourceforge.net/. 2004. Last visted: March 2005.

 [13] Hamilton, Eric. JPEG File Interchange Format, Version 1.02.
 1 September 1992

 [14] Joint Photographic Experts Group, “JPEG 2000 Specification”
 http://www.jpeg.org/jpeg2000/, 2004. Last visited: March 2005.

[15] CompuServe Incorporated.,”GRAPHICS INTERCHANGE
 FORMAT(sm)”, July 1990

142

[16] Wouters, Wim. “BMP Format”, February 1997.

 [17] Apple Computer, Inc., "QuickTime File Format Specification",

 May 1996.

 [18] Microsoft Corporation, “Advanced Systems Format (AFS) Specification
 Revision 01.20.02”, June 2004.

[19] PKWARE Inc. “.ZIP File Format Specification Version: 6.2.0”,
 June 2004.

[20] Wilson,Scott. “WAVE PCM soundfile format”,
 http://ccrma.stanford.edu/courses/422/projects/WaveFormat/, 2003.
 Last visited March 2005.

[21] McGowan, John. “AVI Overview”,
 http://camars.kaist.ac.kr/~jaewon/special/avi/avi.html , 1997.
 Last visited March 2005.

[22] R.S. Boyer, and J.S. Moore, A Fast String Searching Algorithm.,
Communications of the Association for Computing Machinery, 20(10),
1977, pp. 762-772.

 [23] Komoncharoensiri, Jamras. “String Searching and Replacement”,
 http://www.4d.com/docs/CMU/CMU79780.HTM, 2001. Last visited
 December 2004.

 [24] Bovet, Daniel, and Cesati, Marco. Understanding the LINUX KERNEL.
 Oreilly, Sebastopol, 2001.

 [25] Carrier, Brian. “Digital Forensics Tool Testing Image (#8)”,
 http://dftt.sourceforge.net/test8/, 2004. Last visited January 2005.

[26] Johnsonbaugh, Richard, and Kalin, Martin. Applications Programming in
ANSI C. 3rd Ed., Prentice Hall, New Jersey, 1996.

143

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chris Eagle
Naval Postgraduate School
Monterey, California

4. Dr. George Dinolt
Naval Postgraduate School
Monterey, California

5. Cynthia Irvine

Naval Postgraduate School
Monterey, California

6. Nick Mikus
Naval Postgraduate School
Monterey, California

